Cho điểm M(xo; yo) thuộc hypebol có hai tiêu điểm F1(-c;0), F2(c;0), độ dài trục thực bằng 2a

Giải Chuyên đề Toán 10 Bài 6: Hypebol

HĐ2 trang 49 Chuyên đề Toán 10: Cho điểm M(x0; y0) thuộc hypebol có hai tiêu điểm F1(–c; 0), F2(c; 0), độ dài trục thực bằng 2a.

a) Tính MF12 – MF22.

b) Giả sử M(x0; y0) thuộc nhánh chứa đỉnh A2(a; 0), tức là, MF1 – MF2 = 2a. Tính MF1 + MF2, MF1, MF2.

c) Giả sử M(x0; y0) thuộc nhánh chứa đỉnh A1(–a; 0), tức là, MF2 – MF1 = 2a. Tính MF1 + MF2, MF1, MF2.

Quảng cáo

Lời giải:

a) MF12 – MF22 = (x2 + 2cx + c2 + y2) – (x2 – 2cx + c2 + y2) = 4cx.

b) Ta có: MF12 – MF22 = 4cx ⇒ (MF1 + MF2)(MF1 – MF2) = 4cx

⇒  (MF1 + MF2)2a = 4cx

⇒ MF1 + MF2 = 4cx2a = 2cax. Khi đó:

(MF1 + MF2) + (MF1 – MF2) = 2cax + 2a ⇒ 2MF1 = 2cax + 2a

⇒ MF1 = a + cax = a+cax.

(MF1 + MF2) – (MF1 – MF2) = 2cax – 2a ⇒ 2MF2 = 2cax – 2a

⇒ MF2 = cax – a = acax.

c) Ta có: MF12 – MF22 = 4cx

⇒ (MF1 + MF2)(MF1 – MF2) = 4cx

⇒ (MF1 + MF2)(–2a) = 4cx

⇒ MF1 + MF2 = 4cx2a = –2cax. Khi đó:

(MF1 + MF2) + (MF1 – MF2) = –2cax + (–2a) ⇒ 2MF1 = –2cax – 2a

⇒ MF1 = –cax+aa+cax.

(MF1 + MF2) – (MF1 – MF2) = –2cax – (–2a) ⇒ 2MF2 = – 2cax+ 2a

⇒ MF2 =  a –cax = acax.

Quảng cáo


Xem thêm lời giải bài tập Chuyên đề học tập Toán 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 sách mới các môn học