Bài 2.18 trang 61 Sách bài tập Hình học 12



Bài 2: Mặt cầu

Bài 2.18 trang 61 Sách bài tập Hình học 12: Hình chóp S.ABC là hình chóp tam giác đều, có cạnh đáy bằng a và cạnh bên bằng a√2. Một mặt cầu đi qua đỉnh A và tiếp xúc với hai cạnh SB , SC tại trung điểm của mỗi cạnh.

a) Chứng minh rằng mặt cầu đó đi qua trung điểm của AB và AC.

b) Gọi giao điểm thứ hai của mặt cầu với đường thẳng SA là D. Tính độ dài của AD và SD.

Lời giải:

Quảng cáo
Giải sách bài tập Toán 12 | Giải SBT Toán 12

a) Giả sử mặt cầu đi qua đỉnh A của hình chóp và tiếp xúc với cạnh SB tại B1, tiếp xúc với cạnh SC tại C1. Khi đó mặt cầu cắt cạnh AB, AC lần lượt tại các điểm C2, B2. Mặt phẳng (SAB) cắt mặt cầu đó theo giao tuyến là một đường tròn. Đường tròn này tiếp xúc với SB tại B1 và đi qua A và C2.

Do đó, ta có: BB12 = BA. BC2

trong đó Giải sách bài tập Toán 12 | Giải SBT Toán 12

Do đó Giải sách bài tập Toán 12 | Giải SBT Toán 12

Vậy

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Điều đó chứng tỏ mặt cầu nói trên đi qua trung điểm C2 của đoạn AB. Lí luận tương tự ta chứng minh được mặt cầu đó đi qua trung điểm B2 của AC.

b) Gọi giao điểm thứ hai của mặt cầu với đường thẳng SA là D, ta có:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Do đó

Giải sách bài tập Toán 12 | Giải SBT Toán 12
Quảng cáo

Các bài giải sách bài tập Hình học 12 khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


bai-2-mat-cau.jsp


Giải bài tập lớp 12 sách mới các môn học