Bài 1.19 trang 16 Sách bài tập Giải tích 12



Bài 2: Cực trị của hàm số

Bài 1.19 trang 16 Sách bài tập Giải tích 12: Tìm cực trị của các hàm số sau:

Giải sách bài tập Toán 12 | Giải SBT Toán 12 Giải sách bài tập Toán 12 | Giải SBT Toán 12

Lời giải:

Quảng cáo

a) TXĐ: R

Giải sách bài tập Toán 12 | Giải SBT Toán 12

y′ = 0 ⇔ x = 64

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Vậy ta có y = y(0) = 0 và yCT = y(64) = -32.

b) Hàm số xác định trên khoảng (−∞;+∞).

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Vậy yCD = y(−2) = Giải sách bài tập Toán 12 | Giải SBT Toán 12

c) Hàm số xác định trên khoảng (−√10;√10).

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Vì y’ > 0 với mọi (−√10;√10) nên hàm số đồng biến trên khoảng đó và do đó không có cực trị.

d) TXĐ: D = (−∞; −√6) ∪ (√6; +∞)

Giải sách bài tập Toán 12 | Giải SBT Toán 12 Giải sách bài tập Toán 12 | Giải SBT Toán 12 Giải sách bài tập Toán 12 | Giải SBT Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Từ đó ta thấy hàm số đạt cực đại tại x = -3, đạt cực tiểu tại x = -3 và yCT = y(3) = 9√3; yCD = y(−3) = −9√3

Quảng cáo

Các bài giải sách bài tập Giải tích 12 khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


bai-2-cuc-tri-cua-ham-so.jsp


Giải bài tập lớp 12 sách mới các môn học