Bài 2.26 trang 62 Sách bài tập Hình học 12



Đề toán tổng hợp chương 2

Bài 2.26 trang 62 Sách bài tập Hình học 12: Cho hình chóp S.ABC và biết rằng có một mặt cầu tiếp xúc với tất cả các cạnh bên của hình chóp đồng thời tiếp xúc với ba cạnh của đáy tại trung điểm của mỗi cạnh đáy. Chứng minh hình chóp đó là hình chóp đều.

Lời giải:

Quảng cáo
Giải sách bài tập Toán 12 | Giải SBT Toán 12

Gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC, CA và A’ , B’, C’ là các điểm tiếp xúc của các cạnh bên SA, SB, SC với mặt cầu. Ta có AA’ và AM là hai tiếp tuyến nên AM = AA’. Vì M là trung điểm của AB nên AM = MB.

Mặt khác BM = BB’, ta suy ra AA’ = BB’

Vì SA’ = SB’ nên SA’ + A’A = SB’ + B’B hay SA = SB.

Tương tự, ta chứng minh được SB = SC

Do đó SA = SB = SC.

Mặt khác AB = 2BM = 2BN = BC = 2CN = 2CP = CA

Vậy AB = BC = CA và ABC là một tam giác đều nên là một hình chóp đều. Ta có đường cao kẻ từ S có chân H là tâm đường tròn ngoại tiếp tam giác đều ABC.

Quảng cáo

Các bài giải sách bài tập Hình học 12 khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


de-toan-tong-hop-chuong-2.jsp


Giải bài tập lớp 12 sách mới các môn học