Bài 7 trang 216 Sách bài tập Giải tích 12



Ôn tập cuối năm

Bài 7 trang 216 Sách bài tập Giải tích 12: Tìm giá trị lớn nhất và nhỏ nhất của các hàm số sau trên các khoảng, đoạn tương ứng:

a) g(x) = |x3 + 3x2 – 72x + 90| trên đoạn [-5; 5]

b) f(x) = x4 – 4x2 + 1 trên đoạn [-1; 2]

c) f(x) = x – ln x + 3 trên khoảng (0; ∞)

Lời giải:

Quảng cáo

a) Xét hàm số f(x) = x3 + 3x2 − 72x + 90 trên đoạn [-5;5]

f′(x) =3x2 + 6x − 72;

f′(x) = 0 Giải sách bài tập Toán 12 | Giải SBT Toán 12

f(−5) = 400; f(5) = −70; f(4) = −86

Ngoài ra, f(x) liên tục trên đoạn [-5;5] và f(−5).f(5) < 0 nên tồn tại x0 ∈ (−5;5) sao cho f(x0) = 0

Ta có g(x) = |f(x)| ≤ 0 và g(x0) = |f(x0)| = 0;

g(−5) = |400| = 400

g(5) = |−70| = 70; g(4) = |f(4)| = |−86| = 86

Vậy min g(x) = g(x0) = 0; max g(x) = g(−5) = 400

b) min f(x) = f(√2) = −3; max f(x) = f(2) = f(0) = 1

c) min f(x) = f(1) = 4. Không có giá trị lớn nhất.

Quảng cáo

Các bài giải sách bài tập Giải tích 12 khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


on-tap-cuoi-nam.jsp


Giải bài tập lớp 12 sách mới các môn học