Giải thích vì sao chỉ cần kiểm tra nghiệm của phương trình f(x) = [g(x)]^2 thỏa mãn bất phương trình g(x) ≥ 0

Giải sách bài tập Toán 10 Bài 5: Hai dạng phương trình quy về phương trình bậc hai

Bài 39 trang 60 SBT Toán 10 Tập 1:Giải thích vì sao chỉ cần kiểm tra nghiệm của phương trình f(x) = [g(x)]2 thỏa mãn bất phương trình g(x) ≥ 0 mà không cần kiểm tra thỏa mãn bất phương trình f(x) ≥ 0 để kết luận nghiệm của phương trình fx=gx.

Quảng cáo

Lời giải:

Xét fx=gx (**)

Điều kiện của phương trình gồm:

+) Điều kiện tồn tại của căn thức là f(x) ≥ 0

+) Vì fx ≥ 0 nên g(x) ≥ 0.

Bình phương 2 vế của phương trình (**) là: f(x) = [g(x)]2 ≥ 0

Do đó trong hai điều kiện ta chỉ cần g(x) ≥ 0.

Quảng cáo


Xem thêm các bài giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 Cánh diều khác