Viết phương trình của đường tròn (C) trong các trường hợp sau

Sách bài tập Toán 10 Bài 21: Đường tròn trong mặt phẳng tọa độ

Bài 7.21 trang 41 Sách bài tập Toán lớp 10 Tập 2: Viết phương trình của đường tròn (C) trong các trường hợp sau.

a) Có tâm I(3; 1) và có bán kính R = 2.

b) Có tâm I(3; 1) và đi qua điểm M(–1; 7).

c) Có tâm I(2; –4) và tiếp xúc với đường thẳng Δ: 3x – 2y – 1 = 0.

d) Có đường kính AB với A(4; 1), B(–2; –5).

Quảng cáo

Lời giải:

a)

Phương trình đường tròn có tâm I(3; 1) và có bán kính R = 2 là:

(x – 3)2 + (y – 1)2 = 22

⇔ (x – 3)2 + (y – 1)2 = 4.

b)

Đường tròn có tâm I(3; 1) và đi qua điểm M(–1; 7) có bán kính

R = IM = (-1-3)2+(7-1)2=213

Phương trình đường tròn có tâm I(3; 1) và đi qua điểm M(–1; 7) là:

(x – 3)2 + (y – 1)2 = (213)2

⇔ (x – 3)2 + (y – 1)2 = 52.

c)

Đường tròn có tâm I(2; –4) và tiếp xúc với đường thẳng Δ: 3x – 2y – 1 = 0 có bán kính R = Viết phương trình của đường tròn (C) trong các trường hợp sau

Phương trình đường tròn có tâm I(2; –4) và tiếp xúc với đường thẳng Δ: 3x – 2y – 1 = 0 là:

(x – 2)2 + (y + 4)2 = (13)2

⇔ (x – 2)2 + (y + 4)2 = 13.

d)

Đường tròn có đường kính AB với A(4; 1), B(–2; –5) có:

Tâm I là trung điểm AB nên:

xI = (xA + xB) : 2 = (4 + (– 2)) : 2 = 1

yI = (yA + yB) : 2 = (1 + (– 5)) : 2 = –2

Do đó, I(1; –2).

Bán kính R = AB2=(-2-4)2+(-5-1)22=32

Phương trình đường tròn có đường kính AB với A(4; 1), B(–2; –5) là:

(x – 1)2 + (y + 2)2 = (32)2

⇔ (x – 1)2 + (y + 2)2 = 18.

Quảng cáo


Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 Kết nối tri thức khác