Viết phương trình chính tắc của parabol (P), biết rằng (P) có đường chuẩn là đường thẳng Δ

Sách bài tập Toán 10 Bài 22: Ba đường conic

Bài 7.33 trang 46 Sách bài tập Toán lớp 10 Tập 2: Viết phương trình chính tắc của parabol (P), biết rằng (P) có đường chuẩn là đường thẳng Δ: x + 4 = 0. Tìm toạ độ điểm M thuộc (P) sao cho khoảng cách từ M đến tiêu điểm của (P) bằng 5.

Quảng cáo

Lời giải:

Phương trình chính tắc của (P) có dạng y2 = 2px, trong đó p > 0.

Vì (P) có đường chuẩn là Δ: x + 4 = 0 ⇔ x = –4 ⇔ –p : 2 = –4 ⇔ p = 8

Vậy phương trình chính tắc của (P) là y2 = 16x.

Gọi M (x0; y0).

Vì M thuộc (P) nên ta có:

d(M, Δ) = MF = 5 với F là tiêu điểm của (P) và F(4; 0).

Viết phương trình chính tắc của parabol (P), biết rằng (P) có đường chuẩn là đường thẳng Δ

⇔ |x0 + 4| = 5 (*)

TH1: x0 + 4 ≥ 0 hay x0 ≥ –4

(*) ⇔ x0 + 4 = 5 ⇔ x0 = 1 (thỏa mãn)

TH2: x0 + 4 < 0 hay x0 < –4

(*) ⇔ –x0 – 4 = 5 ⇔ x0 = –9 (thỏa mãn)

Với x0 = –9, thay vào phương trình của (P) ta được y02 = 16.(–9) = –144 < 0 (không thể tồn tại)

Với x0 = 1, thay vào phương trình của (P) ta được y02 = 16.1 = 16 ⇔ y0 = ±4

Vậy M(1; 4) hoặc M(1; –4).

Quảng cáo


Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 Kết nối tri thức khác