Cho hình hộp chữ nhật ABCD.A'B'C'D' có DA = 2, DC = 3, DD' = 2. Tính khoảng cách từ đỉnh B' đến mặt phẳng (BA'C')

Giải SBT Toán 12 Chân trời sáng tạo Bài 1: Phương trình mặt phẳng

Bài 6 trang 46 SBT Toán 12 Tập 2: Cho hình hộp chữ nhật ABCD.A'B'C'D' có DA = 2, DC = 3, DD' = 2. Tính khoảng cách từ đỉnh B' đến mặt phẳng (BA'C').

Quảng cáo

Lời giải:

Cho hình hộp chữ nhật ABCD.A'B'C'D' có DA = 2, DC = 3, DD' = 2. Tính khoảng cách từ đỉnh B' đến mặt phẳng (BA'C')

Chọn hệ tọa độ Oxyz sao cho gốc tọa độ O trùng với điểm D.

Khi đó, tọa độ các đỉnh của hình chữ nhật ABCD.A'B'C'D' lần lượt là D(0; 0; 0),

A(2; 0; 0), C(0; 3; 0), B(2; 3; 0), D'(0; 0; 2), A'(2; 0; 2), B'(2; 3; 2), C'(0; 3; 2).

Mặt phẳng (BA'C') có cặp vectơ chỉ phương là BA'=0;3;2BC'=2;0;2

Ta có: n=BA',BC'=3202;2022;0320 = (−6; −4; −6) = −2(3; 2; 3).

Do đó, n = (3; 2; 3). Phương trình mặt phẳng (BA'C') là:

3(x – 2) + 2(y – 3) + 3z = 0 hay 3x + 2y + 3z – 12 = 0.

Khoảng cách từ đỉnh B' đến mặt phẳng (BA'C') là:

d(B', (BA'C')) = 3.2+2.3+3.21232+22+32=32211

Quảng cáo

Lời giải SBT Toán 12 Bài 1: Phương trình mặt phẳng hay khác:

Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 12 Chân trời sáng tạo khác