Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh BC, BD

Giải sách bài tập Toán 12 Bài 6: Vectơ trong không gian - Kết nối tri thức

Bài 2.6 trang 44 SBT Toán 12 Tập 1: Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh BC, BD. Gọi E, F lần lượt là trọng tâm của các tam giác ABC, ABD. Chứng minh rằng:

a) EF=23MN;

b) EF=13CD.

Quảng cáo

Lời giải:

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh BC, BD

a) Xét tam giác AMN, ta có: AE = 23AM, AF = 23AN (E, F là trọng tâm tam giác ABC, ABD).

Theo định lí Thales đảo suy EF // MN và EF = 23MN.

EF và MN cùng hướng nên EF=23MN.

b) Xét tam giác BCD, có M, N là trung điểm CB, DB nên MN là đường trung bình của tam giác.

Ta có: MN // CD và MN = 12CD.

CD và MN cùng hướng nên MN=12CD.

Do đó, EF=23MN=23.12CD=13CD.

Vậy EF=13CD.

Quảng cáo

Lời giải Sách bài tập Toán lớp 12 Bài 6: Vectơ trong không gian hay khác:

Quảng cáo
Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 12 Kết nối tri thức khác