Hoạt động khám phá 1 trang 12 Toán 12 Tập 2 Chân trời sáng tạo

Giải Toán 12 Bài 2: Tích phân - Chân trời sáng tạo

Hoạt động khám phá 1 trang 12 Toán 12 Tập 2: Cho hàm số y = f(x) = x + 1. Với mỗi x ≥ 1, kí hiệu S(x) là diện tích của hình thang giới hạn bởi đồ thị hàm số y = f(x), trục hoành và hai đường thẳng vuông góc với Ox tại các điểm có hoành độ 1 và x.

Quảng cáo

a) Tính S(3).

b) Tính S(x) với mỗi x ≥ 1.

c) Tính S'(x). Từ đó suy ra S(x) là một nguyên hàm của f(x) trên [1; +∞).

d) Cho F(x) là một nguyên hàm của hàm số f(x). Chứng tỏ rằng F(3) – F(1) = S(3). Từ đó nhận xét về cách tính S(3) khi biết một nguyên hàm của f(x).

Hoạt động khám phá 1 trang 12 Toán 12 Tập 2 Chân trời sáng tạo | Giải Toán 12

Lời giải:

a)

Hoạt động khám phá 1 trang 12 Toán 12 Tập 2 Chân trời sáng tạo | Giải Toán 12

Gọi A(1; 0), B(3; 0), C, D lần lượt là giao điểm của đường thẳng x = 3; x = 1 với đường thẳng y = x + 1.

Khi đó C(3; 4), D(1; 2).

Ta có S(3) là diện tích của hình thang vuông ABCD với đáy bé AD = 2; đáy lớn BC = 4 và đường cao AB = 2.

Do đó S3=SABCD=AD+BC.AB2=2+4.22=6.

b)

Hoạt động khám phá 1 trang 12 Toán 12 Tập 2 Chân trời sáng tạo | Giải Toán 12

Tương tự như câu a, ta có A(1; 0), B(x; 0), C(x; x + 1), D(1; 2).

Ta có S(x) là diện tích hình thang ABCD với đáy bé AD = 2, đáy lớn BC = x + 1 và đường cao AB = x – 1.

Do đó Sx=SABCD=AD+BC.AB2=x+3x12=x2+2x32 , x ≥ 1.

c) Có S'x=x2+2x32'=2x+22=x+1=fx.

Do đó S(x) là một nguyên hàm của f(x) trên [1; +∞).

d) Vì F(x) là nguyên hàm của hàm số f(x) nên

Fx=x+1dx=x22+x+C.

Do đó F3=322+3+C=152+C; F1=122+1+C=32+C.

Suy ra F3F1=152+C32+C=6=S3.

Để tính S(3), ta cần tìm nguyên hàm F(x) của f(x) và tính S(3) = F(3) – F(1).

Quảng cáo

Lời giải bài tập Toán 12 Bài 2: Tích phân hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 12 Chân trời sáng tạo khác