Hoạt động khám phá 2 trang 6 Toán 12 Tập 2 Chân trời sáng tạo

Giải Toán 12 Bài 1: Nguyên hàm - Chân trời sáng tạo

Hoạt động khám phá 2 trang 6 Toán 12 Tập 2: Cho hàm số f(x) = 3x2 xác định trên ℝ.

Quảng cáo

a) Chứng minh rằng F(x) = x3 là một nguyên hàm của f(x) trên ℝ.

b) Với C là hằng số tùy ý, hàm số H(x) = F(x) + C có là nguyên hàm của f(x) trên ℝ không?

c) Giả sử G(x) là một nguyên hàm của f(x) trên ℝ. Tìm đạo hàm của hàm số G(x) – F(x). Từ đó, có nhận xét gì về hàm số G(x) – F(x)?

Lời giải:

a) Ta có F'(x) = (x3)' = 3x2 = f(x).

Do đó F(x) = x3 là một nguyên hàm của f(x) trên ℝ.

b) Có H(x) = F(x) + C = x3 + C.

Có H'(x) = (x3 + C)' = 3x2 = f(x).

Do đó hàm số H(x) = F(x) + C cũng là nguyên hàm của f(x) trên ℝ.

c) Có (G(x) – F(x))' = G'(x) – F'(x) = f(x) – f(x) = 0.

Vì (G(x) – F(x))' = 0 nên G(x) – F(x) là một hằng số.

Hay G(x) = F(x) + C, C là hằng số bất kì.

Quảng cáo

Lời giải bài tập Toán 12 Bài 1: Nguyên hàm hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 12 Chân trời sáng tạo khác