Hoạt động khởi động trang 75 Toán 12 Tập 2 Chân trời sáng tạo

Giải Toán 12 Bài 2: Công thức xác suất toàn phần và công thức Bayes - Chân trời sáng tạo

Hoạt động khởi động trang 75 Toán 12 Tập 2: Một loại xét nghiệm nhanh SARS–CoV–2 cho kết quả dương tính với 76,2% các ca thực sự nhiễm virus và kết quả âm tích với 99,1% các ca thực sự không nhiễm virus (nguồn: https://tapchiyhocvietnam.vn/index.php/vmj/article/view/2124/1921). Giả sử tỉ lệ người nhiễm virus SARS–CoV–2 trong một cộng đồng là 1%. Một người trong cộng đồng đó làm xét nghiệm và nhận kết quả dương tính. Hỏi khả năng người đó thực sự nhiễm virus là cao hay thấp?

Quảng cáo

Lời giải:

Sau khi học xong bài này, ta giải quyết bài toán này như sau:

Gọi A là biến cố “Người làm xét nghiệm có kết quả dương tính” và B là biến cố “Người làm xét nghiệm thực sự nhiễm vi rút”.

Ta có P(A|B) = 0,762; PA¯|B¯=0,991; P(B) = 0,01.

Suy ra PA|B¯=1PA¯|B¯=0,009PB¯=1PB=0,99

Theo công thức xác suất toàn phần ta có:

PA=PB.PA|B+PB¯.PA|B¯ = 0,01.0,762 + 0,99.0,009 = 0,01653.

Xác suất một người thực sự nhiễm virus khi người đó có kết quả xét nghiệm dương tính là P(B|A).

Ta có PB|A=PB.PA|BPA=0,01.0,7620,016530,461

Vậy khả năng thực sự người đó nhiễn virus là 46,1%.

Quảng cáo

Lời giải bài tập Toán 12 Bài 2: Công thức xác suất toàn phần và công thức Bayes hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 12 Chân trời sáng tạo khác