Thực hành 1 trang 89 Toán 12 Tập 1 Chân trời sáng tạo

Giải Toán 12 Bài 1: Vẽ đồ thị hàm số bằng phần mềm Geogebra - Chân trời sáng tạo

Thực hành 1 trang 89 Toán 12 Tập 1: Vẽ đồ thị các hàm số bậc ba sau:

a) y = x3;       b) y = x3 – 3x;

c) y = −x3 + 3x;    d) y = x3 – 3x + 2.

Quảng cáo

Lời giải:

a) y = x3

- Tạo các thanh trượt biểu thị các tham số a, b, c, d bằng cách nhấp chuột liên tiếp vào thanh công cụ Thực hành 1 trang 89 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12 và vào vị trí màn hình nơi mà ta muốn đặt thanh trượt.

Thực hành 1 trang 89 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

- Nhập hàm số y = x3 vào vùng nhập lệnh.

- Ta được đồ thị như hình vẽ

Thực hành 1 trang 89 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

- Nhận xét:

Hàm số đồng biến trên khoảng (0; +∞) và nghịch biến trên khoảng (−∞; 0).

Hàm số đã cho không có cực trị.

Đồ thị có tâm đối xứng là (0; 0).

b) y = x3 – 3x

- Tạo các thanh trượt biểu thị các tham số a, b, c, d bằng cách nhấp chuột liên tiếp vào thanh công cụ Thực hành 1 trang 89 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12 và vào vị trí màn hình nơi mà ta muốn đặt thanh trượt.

Thực hành 1 trang 89 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

- Nhập hàm số y = x3 – 3x vào vùng nhập lệnh.

- Ta được đồ thị như hình vẽ

Thực hành 1 trang 89 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Nhận xét:

Hàm số đồng biến trên các khoảng (−∞; −1) và (1; +∞).

Hàm số nghịch biến trên khoảng (−1; 1).

Điểm cực đại là (−1; 2), điểm cực tiểu là (1; −2).

Đồ thị hàm số có tâm đối xứng là (0; 0).

c) y = −x3 + 3x

- Tạo các thanh trượt biểu thị các tham số a, b, c, d bằng cách nhấp chuột liên tiếp vào thanh công cụ Thực hành 1 trang 89 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12 và vào vị trí màn hình nơi mà ta muốn đặt thanh trượt.

Thực hành 1 trang 89 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

- Nhập hàm số y = −x3 + 3x vào vùng nhập lệnh.

- Ta được đồ thị như hình vẽ

Thực hành 1 trang 89 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Nhận xét:

Hàm số nghịch biến trên các khoảng (−∞; −1) và (1; +∞).

Hàm số đồng biến trên khoảng (−1; 1).

Điểm cực đại là (1; 2), điểm cực tiểu là (−1; −2).

Đồ thị hàm số có tâm đối xứng là (0; 0).

d) y = x3 – 3x + 2

- Tạo các thanh trượt biểu thị các tham số a, b, c, d bằng cách nhấp chuột liên tiếp vào thanh công cụ Thực hành 1 trang 89 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12 và vào vị trí màn hình nơi mà ta muốn đặt thanh trượt.

Thực hành 1 trang 89 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

- Nhập hàm số y = x3 – 3x + 2 vào vùng nhập lệnh.

- Ta được đồ thị như hình vẽ

Thực hành 1 trang 89 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Nhận xét:

Hàm số đồng biến trên các khoảng (−∞; −1) và (1; +∞).

Hàm số nghịch biến trên khoảng (−1; 1).

Điểm cực đại là (−1; 4), điểm cực tiểu là (1; 0).

Đồ thị hàm số có tâm đối xứng là (0; 2).

Quảng cáo

Lời giải bài tập Toán 12 Bài 1: Vẽ đồ thị hàm số bằng phần mềm Geogebra hay, chi tiết khác:

Quảng cáo

Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 12 Chân trời sáng tạo khác