Bài 5.14 trang 48 Toán 12 Tập 2 - Kết nối tri thức

Giải Toán 12 Bài 15: Phương trình đường thẳng trong không gian - Kết nối tri thức

Bài 5.14 trang 48 Toán 12 Tập 2: Trong không gian Oxyz, cho hai đường thẳng: Δ1:x=1+2ty=3tz=2+3t và Δ2:x81=y+21=z22

Quảng cáo

a) Chứng minh rằng ∆1 và ∆2 cắt nhau.

b) Viết phương trình mặt phẳng (P) chứa ∆1 và ∆2.

Lời giải:

a) Đường thẳng ∆1 đi qua điểm A(1; 3; 2) và có vectơ chỉ phương u1=2;1;3

Đường thẳng ∆2 đi qua điểm B(8; −2; 2) và có vectơ chỉ phương u2=1;1;2 

Ta có AB=7;5;0u1,u2=5;7;10 (1).

AB.u1,u2=35+35=0(2).

Từ (1) và (2) suy ra ∆1 và ∆2 cắt nhau.

b) Mặt phẳng (P) chứa ∆1 và ∆2 nên có một vectơ pháp tuyến là n=u1,u2=5;7;1.

Mặt phẳng (P) đi qua điểm A(1; 3; 2), có vectơ pháp tuyến n=5;7;1 có phương trình là: −5(x – 1) – 7(y – 3) + (z – 2) = 0 ⇔ 5x + 7y – z – 24 = 0 .

Quảng cáo

Lời giải bài tập Toán 12 Bài 15: Phương trình đường thẳng trong không gian hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 12 Kết nối tri thức khác