HĐ4 trang 32 Toán 12 Tập 2 - Kết nối tri thức

Giải Toán 12 Bài 14: Phương trình mặt phẳng - Kết nối tri thức

HĐ4 trang 32 Toán 12 Tập 2: Trong không gian Oxyz, cho mặt phẳng (α). Gọi n=A;B;C là một vectơ pháp tuyến của (α) và M0(x0; y0; z0) là một điểm thuộc (α).

Quảng cáo

a) Một điểm M(x; y; z) thuộc (α) khi và chỉ khi hai vectơ nM0M có mối quan hệ gì?

b) Điểm M(x; y; z) thuộc (α) khi và chỉ khi tọa độ của nó thỏa mãn hệ thức nào?

Lời giải:

a) Ta có M0M=xx0;yy0;zz0

n=A;B;C là một vectơ pháp tuyến của (α) nên nM0M

Suy ra n.M0M=0 ⇔ A(x – x0) + B(y – y0) + C(z – z0) = 0.

Vậy một điểm M(x; y; z) thuộc (α) khi và chỉ khi hai vectơ nM0M vuông góc với nhau.

b) Từ câu a, ta có A(x – x0) + B(y – y0) + C(z – z0) = 0

⇔ Ax + By + Cz = Ax0 + By0 + Cz0

⇔ Ax + By + Cz = D (trong đó D = Ax0 + By0 + Cz0).

Vậy điểm M(x; y; z) thuộc (α) khi và chỉ khi tọa độ của nó thỏa mãn hệ thức Ax + By + Cz = D trong đó n=A;B;C và D = Ax0 + By0 + Cz0.

Quảng cáo

Lời giải bài tập Toán 12 Bài 14: Phương trình mặt phẳng hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 12 Kết nối tri thức khác