Bài 2 trang 82 Toán 9 Tập 1 Chân trời sáng tạo

Giải Toán 9 Bài 1: Đường tròn - Chân trời sáng tạo

Bài 2 trang 82 Toán 9 Tập 1: Cho hình chữ nhật ABCD có AD = 18 cm và CD = 12 cm. Chứng minh rằng bốn điểm A, B, C, D cùng thuộc một đường tròn. Tính bán kính của đường tròn đó.

Quảng cáo

Lời giải:

Bài 2 trang 82 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

⦁ Vì ABCD là hình chữ nhật nên AC = BD. (1)

Gọi O là giao điểm của hai đường chéo AC, BD của hình chữ nhật.

Khi đó, O là trung điểm của AC và BD (tính chất hình chữ nhật) nên OA=OC=12AC; OB=OD=12BD.(2)

Từ (1) và (2) ta có OA=OC=OB=OD=12AC=12BD.

Vậy bốn điểm A, B, C, D cùng thuộc một đường tròn đường kính AC, BD.

⦁ Vì ABCD là hình chữ nhật nên ADC^=90°.

Xét ∆ADC vuông tại D, theo định lí Pythagore, ta có:

AC2 = AD2 + DC2 = 182 + 122 = 468.

Do đó AC=468=6213=613 (cm).

Vậy bán kính đường tròn đi qua bốn điểm A, B, C, D là 12AC=12613=313 (cm).

Quảng cáo

Lời giải bài tập Toán 9 Bài 1: Đường tròn hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải sgk Toán 9 Tập 1 & Tập 2 của chúng tôi được biên soạn bám sát nội dung sgk Toán 9 Chân trời sáng tạo (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 9 Chân trời sáng tạo khác