Bài 5 trang 74 Toán 9 Tập 2 Chân trời sáng tạo

Giải Toán 9 Bài 2: Tứ giác nội tiếp - Chân trời sáng tạo

Bài 5 trang 74 Toán 9 Tập 2: Từ một điểm M nằm ngoài đường tròn (O), vẽ cát tuyến MBC và tiếp tuyến Mt tiếp xúc với (O) tại A. Gọi I là trung điểm của dây BC. Chứng minh AMIO là một tứ giác nội tiếp.

Quảng cáo

Lời giải:

Bài 5 trang 74 Toán 9 Tập 2 Chân trời sáng tạo | Giải Toán 9

Vì MA là tiếp tuyến của (O) nên MA ⊥ OA hay OAM^=90°.

Vì I là trung điểm của BC của ∆OBC cân tại O nên OI ⊥ BC hay OIM^=90°.

Ta có ∆OAM vuông tại A và ∆OIM vuông tại I cùng nội tiếp đường tròn đường kính MO.

Suy ra AMIO là tứ giác nội tiếp đường tròn đường kính MO.

Quảng cáo

Lời giải bài tập Toán 9 Bài 2: Tứ giác nội tiếp hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải sgk Toán 9 Tập 1 & Tập 2 của chúng tôi được biên soạn bám sát nội dung sgk Toán 9 Chân trời sáng tạo (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 9 Chân trời sáng tạo khác