Cho hình vẽ dưới dây. Biết rằng AD = BC, góc DAC = góc CBD, O là giao điểm của AC và BD

Giải Vở thực hành Toán 7 Luyện tập chung trang 66, 67, 68

Bài 5 trang 68 vở thực hành Toán lớp 7 Tập 1: Cho hình vẽ dưới dây. Biết rằng AD = BC, DAC^=CBD^, O là giao điểm của AC và BD. Chứng minh rằng AO = BO.

Quảng cáo

Lời giải:

Cho hình vẽ dưới dây. Biết rằng AD = BC, góc DAC = góc CBD, O là giao điểm của AC và BD

Ta có: AOD^=BOC^ (hai góc đối đỉnh)

Do tổng các góc trong mỗi tam giác ADO và BCO bằng 180° nên ta có:

ADO^=180°AOD^DAO^=180°BOC^CBO^=BCO^.

Hai tam giác AOD và BOC có:

ADO^=BCO^ (theo chứng minh trên)

AD = BC (theo giả thiết)

DAO^=DAC^=CBD^=CBO^ (theo giả thiết).

Vậy tam giác ∆AOD = ∆BOC (g – c – g).

Quảng cáo

Xem thêm các bài giải vở thực hành Toán lớp 7 sách Kết nối tri thức hay, chi tiết khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải VTH Toán lớp 7 hay nhất, chi tiết được biên soạn bám sát sách Vở thực hành Toán 7 Tập 1, Tập 2 bộ sách Kết nối tri thức (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 7 Kết nối tri thức khác