Cho tam giác nhọn ABC có trực tâm H và nội tiếp đường tròn (O). Lấy D là điểm đối xứng với A qua O

Giải vở thực hành Toán 9 Luyện tập chung trang 94 - Kết nối tri thức

Bài 6 trang 97 VTH Toán 9 Tập 2: Cho tam giác nhọn ABC có trực tâm H và nội tiếp đường tròn (O). Lấy D là điểm đối xứng với A qua O. Chứng minh rằng DH đi qua trung điểm BC.

Quảng cáo

Lời giải:

Cho tam giác nhọn ABC có trực tâm H và nội tiếp đường tròn (O). Lấy D là điểm đối xứng với A qua O

Vì AD là đường kính của (O) nên ABD^ và ACD^ là các góc nội tiếp của (O) chắn nửa đường tròn.

Do đó ABD^=ACD^=90°, hay DB ⊥ AB, DC ⊥ AC. (1)

Mặt khác, vì H là trực tâm của tam giác ABC nên BH ⊥ AC, CH ⊥ AB. (2)

Từ (1) và (2), ta suy ra BH // DC; CH // DB.

Do đó BHCD là hình bình hành.

Vì vậy BC và DH cắt nhau tại trung điểm của mỗi đoạn thẳng.

Quảng cáo

Lời giải vở thực hành Toán 9 Luyện tập chung trang 94 hay khác:

Quảng cáo

Xem thêm các bài giải vở thực hành Toán lớp 9 Kết nối tri thức hay, chi tiết khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải VTH Toán 9 Kết nối tri thức của chúng tôi được biên soạn bám sát nội dung Vở thực hành Toán 9 Tập 1 & Tập 2 (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 9 Kết nối tri thức khác