Đề kiểm tra 1 tiết Toán 12 Giải tích Chương 4 có đáp án



Đề kiểm tra 1 tiết Toán 12 Giải tích Chương 4 có đáp án

Câu 1: Phần thực, phần ảo của tổng hai số phức z1 = 3i + 5, z2 = 4 - 7i là

A. 9 và -4   B. 7 và -2   C. 9 và -4i    D. 7 và -2i.

Quảng cáo

Câu 2: Môđun của tổng hai số phức z1 = 1 + 6i và z2 = 2 - 5i là:

A. 32   B. 4   C. √10   D. 2√2

Câu 3: Môđun của hiệu hai số phức z1 = 3 + 5i và z2 = -1 + 2i là:

A. 3   B. 5   C. √7    D. 7.

Câu 4: Giá trị của biểu thức T = i2016 + i216 + i16 + i6 + 1 ta có

Quảng cáo

A. 3 B. 4   C. 5    D. 6.

Câu 5: Tích của hai số phức z1= -5 + 6i, z2 = 1 - 2i là:

A. - 5 - 12i    B. 7 + 16i   C. -5 + 12i    D. 7 - 16i

Câu 6: Số phức z thỏa mãn

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

A. z = 4 - 3i   B. z = 4 + 3i    C. z = -4 - 3i    D. z = -4 + 3i

Câu 7: Cho các số phức z1 = 1 + i, z2 = 1 - i, z3 = 2 + 3i . Giá trị của biểu thức T = |z1z2 + z2z3 + z3z1| là

A. 6   B. 12   C. 6√2   D. 10.

Quảng cáo

Câu 8: Nghịch đảo của số phức z = 4 + 3i là

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 9:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

A. z = 3 - i    B. z = 3 + i   C. z = -3 + i   D. z = -3 - i

Câu 10: Các số thực x, y thỏa mãn đẳng thức x(3 + 5i) - y(1 + 2i) = 9 + 16i . Giá trị biểu thức T = |x - y| là

A. 0    B. 1   C. 3   D. 5.

Câu 11: Cho số phức z thỏa mãn (1 + 2i)2.z + z = 4i - 20. Môđun của z là

A. 4   B. 5    C. 6   D. 10

Câu 12: Phương trình z2 + az + b = 0 nhận z = 1 - 2i làm nghiệm. Khi đó a + b bằng

A. 3    B. 4   C. 5   D. 6.

Quảng cáo

Câu 13: Phương trình z2 + 1 = 2√2i có các nghiệm là z1, z2 . Tính T = |z1| + |z2|

A. 2   B. 2√2   C. 2√3   D. 12

Câu 14: Phương trình z2 + 4z + 13 = 0 có các nghiệm là

A. 2 ±3i   B. 4 ± 6i   C. -4 ± 6i   D. -2 ± 3i

Câu 15: Phương trình z2 + 6z + 13 = 0 có hai nghiệm là z1, z2 . Giá trị biểu thức T = |z1|2 + |z2|2 bằng:

A. 12    B. 10   C. 16   D. 20.

Câu 16: Cho A và B là các điểm biểu diễn các số phức z1 = 1 + 2i và z2 = 1 - 2i. Diện tích của tam giác OAB bằng

A. 1    B. 2   C. 4   D. 5/2

Câu 17: Cho hai số phức z1, z2 thỏa mãn |z1| = |z2| = 1, |z1 + z2| = √13. Khi đó |z1 - z2|bằng:

A. 0    B. 1   C. 2   D. √3

Câu 18: Tập hợp các điểm biểu diễn số phức z thỏa mãn |z + i| = |1 + √3i| là

A. Đường tròn tâm I(1; 1) bán kính R = 2

B. Đường tròn tâm I(0; 1) bán kính R = 4

C. Đường tròn tâm I(0; 1) bán kính R = 2

D. Đường tròn tâm I(0; -1) bán kính R = 2

Câu 19: Tập hợp các điểm biểu diễn số phức z thỏa mãn |z + 1 + i| ≤ 2 là

A. Đường tròn tâm I(1; 1) bán kính R = 2

B. Hình tròn tâm I(1; 1) bán kính R = 2

C. Đường tròn tâm I(-1; -1) bán kính R = 2

D. Hình tròn tâm I(-1; -1) bán kính R = 2

Câu 20: Phương trình z2 - 2z + 2 = 0 có hai nghiệm z1, z2 . Giá trị biểu thức:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

A. 21000   B. 21001   C. 22000   D. 22001

Hướng dẫn giải và Đáp án

Câu 1 2 3 4 5 6 7 8 9 10
Đáp án A C B A B D C D A D
Câu 11 12 13 14 15 16 17 18 19 20
Đáp án B A C D B B B C D B

Câu 4:

Ta có i2 = -1, i4 = 1. Do đó

T = (i4)504 + (i4)54 + (i4)4 + (i2)3 + 1 = 1 + 1 + 1 - 1 + 1 = 3

Câu 6:

Ta có (1 + 2i)3 = 1 + 6i + 12i2 + 8i3 = 1 + 6i - 12 - 8i = -11 - 2i. Do đó:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy: z = -4 + 3i

Câu 7:

Ta có: z1z2 + z2z3 + z3z1 = z1z2 + z3(z1 + z2) = 1 - i2 + 2(2 + 3i) = 6 + 6i

Do đó: T = | z1z2 + z2z3 + z3z1 | = 6√2

Câu 8:

Nghịch đảo của số phức z = 4 + 3i là

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 9:

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 10:

Ta có: x(3 + 5i) - y(1 + 2i) = 9 + 16i <=> (3x - y) + (5x - 2y) = 9 + 16i

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy: T = |x - y| = 5

Câu 11:

Đặt a + bi(a, b ∈R). Ta có:

(1 + 2i)2z = (1 + 2i - 4)(a + bi) = -3a - 3bi + 4ai - 4b = -3a - 4b + (4a - 3b)i

Do đó: (1 + 2i)2.z + a = 4i - 20 <=> -3a - 4b + (4a - 3b)i + a - bi = 4i - 20

<=> -2a - 4b + (4a - 4b)i = 4i - 20

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 12:

Ta có z = 1 - 2i là nghiệm của phương trình đã cho nên:

(1 - 2i)2 + a(1 - 2i) + b = 0 <=> (a + b - 3) - (2a + 4)i = 0

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy: a + b = -2 + 5 = 3

Câu 13:

Ta có: z2 = -1 + 2√2i = 1 + 2√2i + 2i2 = (1 + √2i)2 <=> z1,2 = ±(1 + √2i)

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chú ý. Có thể đặt z = a + bi(a,b ∈R). Ta có: z2 = a2 - b2 + 2abi. Từ giả thiết ta có :

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Từ đó suy ra a = 1, b = √2 hoặc a = -1, b = -√2

Do đó phương trình có hai nghiệm: z1,2 = ±(1 + *=√2i)

Câu 14:

Ta có: Δ' = 22 - 13 = -9 = 9i2. Phương trình có hai nghiệm là: z1,2 = -2 ± 3i

Câu 15:

Ta có: Δ' = 9 - 13 = -4 = 4i2

Phương trình có hai nghiệm z1 = -3 - 4i, z2 = - 3 + 4i

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 16:

Các điểm A(1; 2), B(1; -2) nằm trên đường thẳng d: x = 1 và đối xứng qua trục Ox. Gọi H là giao điểm của d với Ox.

Ta có : AB = 2HA = 2.yA = 4, OH = 1

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 17:

Cách 1. Đặt z1 = a1 + b1i, z2 = a2 + b2i (a1, a2, b1, b2 ∈ R). Ta có

|z1| = |z2| = 1

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

|z1 + z2| = √3 => (a1 + a2)2 + (b1 + b2)2 = 3 => 2(a1a2 + b1b2) = 1

Do đó:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Cách 2. Gọi A, B, C là các điểm biểu diễn của các số phức z1 , z2 và z1 + z2

Ta có OACB là hình bình hành. Vì |z1| = |z2| = 1 nên OA = OB = 1 . Suy ra OACB là hình thoi cạnh 1. Do ||z1 + z2| = √3 nên OC = √3 . Suy ra tam giác OAB đều. Từ đó ta có ||z1 - z2| = AB = 1

Câu 18:

Ta có: | 1 + √3i| = √(1 + 3) = 2. Đặt z = a + bi(a, b ∈R). Ta có:

|z + i| = |1 + √3i| <=> |a + (1 - b)i| = 2 <=> a2 + (1 - b)2 = 4

Vậy tập hợp các điểm biểu diễn số phức z là đường tròn tâm I(0 ;1), bán kính R = 2

Câu 19:

Đặt z = a + bi(a, b ∈R). Ta có :

|z + 1 + i| ≤ 2 <=> |a + 1 + (b + 1)i| ≤ (a + 1)2 + (b + 1)2 ≤ 4

Vậy tập hợp các điểm biểu diễn số phức z là hình tròn tâm I(-1 ;-1), bán kính R = 2

Câu 20:

Xét phương trình z2 - 2z + 2 = 0, ta có Δ' = 12 - 2 = -1 = i2. Phương trình có hai nghiệm là : z1,2 = 1 ± i. Ta có :

(1 + i)2 = 1 + 2i + i2 = 2i, (1 - i)2 = 1 + 2i - i2 = -2i

Do đó : (1 ± i)8 = 23. Vậy T = z12000 + z22000 = (z18)250 + (z28)250 = 2.(24)250 = 21001

Xem thêm Bài tập trắc nghiệm Toán 12 phần Giải tích ôn thi tốt nghiệp THPT có đáp án hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.




Giải bài tập lớp 12 sách mới các môn học