Bài 1 trang 18 Chuyên đề Toán 12 Cánh diều

Giải Chuyên đề Toán 12 Bài 2: Phân bố Bernoulli. Phân bố nhị thức - Cánh diều

Bài 1 trang 18 Chuyên đề Toán 12: Một bác sĩ chữa khỏi bệnh A cho một người bị bệnh đó với xác suất là 95%. Giả sử có 10 người bị bệnh A đến bác sĩ chữa một cách độc lập. Tính xác suất để:

Quảng cáo

a) Có 8 người khỏi bệnh.

b) Có nhiều nhất là 9 người khỏi bệnh.

Lời giải:

Gọi X là số người bị bệnh A được bác sĩ chữa khỏi bệnh.

X là biến ngẫu nhiên rời rạc có phân bố nhị thức với tham số 10 và p = 0,95.

a) Có 8 người khỏi bệnh tức là X = 8.

Áp dụng công thức Bernoulli, ta có:

PX=8=C108.0,958.0,0520,075

Vậy xác suất để có 8 người khỏi bệnh khoảng 7,5%.

b) Có nhiều nhất là 9 người khỏi bệnh tức là X £ 9.

Ta có PX9=1PX=10=1C1010.0,95100,401.

Vậy xác suất để có nhiều nhất 9 người khỏi bệnh khoảng 40,1%.

Quảng cáo

Lời giải bài tập Chuyên đề Toán 12 Bài 2: Phân bố Bernoulli. Phân bố nhị thức hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Chuyên đề học tập Toán 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 12 sách mới các môn học