Luyện tập - vận dụng 2 trang 34 Chuyên đề Toán 12 Cánh diều

Giải Chuyên đề Toán 12 Bài 2: Vận dụng đạo hàm để giải quyết một số bài toán tối ưu trong thực tiễn - Cánh diều

Luyện tập - vận dụng 2 trang 34 Chuyên đề Toán 12: Một công ty có 50 căn phòng cho thuê. Biết rằng nếu công ty cho thuê mỗi căn phòng với giá 2 triệu đồng/1 tháng thì mọi căn phòng đều có người thuê, nhưng cứ mỗi lần tăng giá cho thuê mỗi căn phòng 100 000 đồng/1 tháng thì có thêm hai căn phòng bị bỏ trống. Công ty phải cho thuê mỗi căn phòng với giá là bao nhiêu để tổng số tiền thu được là lớn nhất?

Quảng cáo

Lời giải:

Đổi 100 000 đồng = 0,1 triệu đồng.

Gọi x là số lần tăng giá phòng (x ∈ ℕ*).

Số tiền tăng giá trong 1 tháng cho mỗi phòng là: 0,1x (triệu đồng).

Khi đó, giá cho thuê của mỗi căn phòng trong 1 tháng là: 2 + 0,1x (triệu đồng) và số phòng cho thuê được là: 50 – 2x.

Tổng số tiền thu được là: (2 + 0,1x)(50 – 2x) = 100 + x – 0,2x2 (triệu đồng).

Xét hàm số f(x) = 100 + x – 0,2x2, với 1 ≤ x ≤ 25.

Ta có: f’(x) = 1 – 0,4x.

           f’(x) = 0 ⇔ x = 2,5.

Bảng biến thiên của hàm số:

Luyện tập - vận dụng 2 trang 34 Chuyên đề Toán 12 Cánh diều

Căn cứ bảng biến thiên, ta có max1;25fx=f2,5=101,25 tại x = 2,5.

Vậy công ty phải cho thuê mỗi căn phòng với giá là 2 + 0,1.2,5 = 2,25 triệu đồng để tổng số tiền thu được là lớn nhất.

Quảng cáo

Lời giải bài tập Chuyên đề Toán 12 Bài 2: Vận dụng đạo hàm để giải quyết một số bài toán tối ưu trong thực tiễn hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Chuyên đề học tập Toán 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 12 sách mới các môn học