Bài 3.30 trang 115 Sách bài tập Hình học 12



Bài 2: Phương trình mặt phẳng

Bài 3.30 trang 115 Sách bài tập Hình học 12: Lập phương trình của mặt phẳng (α) đi qua điểm M(1; 2; 3) và cắt ba tia Ox, Oy, Oz lần lượt tại A, B, C sao cho thể tích tứ diện OABC nhỏ nhất.

Lời giải:

Quảng cáo

Gọi giao điểm của (α) với ba tia Ox, Oy, Oz lần lượt là A(a; 0; 0), B(0; b; 0), C(0; 0 ; c) (a, b, c > 0).

Mặt phẳng (α) có phương trình theo đoạn chắn là:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Do (α) đi qua M(1; 2; 3) nên ta thay tọa độ của điểm M vào (1):

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Thể tích của tứ diện OABC là:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Áp dụng bất đẳng thức Cô-si ta có:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

⇒ abc ≥ 27.6 ⇒ V ≥ 27

Ta có: V đạt giá trị nhỏ nhất ⇔ V = 27

Giải sách bài tập Toán 12 | Giải SBT Toán 12 Giải sách bài tập Toán 12 | Giải SBT Toán 12

Vậy phương trình mặt phẳng (α) thỏa mãn đề bài là:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

hay 6x + 3y + 2z – 18 = 0

Quảng cáo

Các bài giải sách bài tập Hình học 12 khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


bai-2-phuong-trinh-mat-phang.jsp


Giải bài tập lớp 12 sách mới các môn học