Bài 1.58 trang 36 Sách bài tập Giải tích 12



Bài 5: Khảo sát sự biến thiên và vẽ đồ thị của hàm số

Bài 1.58 trang 36 Sách bài tập Giải tích 12: Tìm giá trị của tham số m để hàm số

a) y = x3 + (m + 3)x2 + mx – 2 đạt cực tiểu tại x = 1

b) y = −(m2 + 6m)x3/3 − 2mx2 + 3x + 1 đạt cực đại tại x = -1;

Lời giải:

Quảng cáo

a) y′ = 3x2 + 2(m + 3)x + m

y′ = 0 ⇔ 3x2 + 2(m + 3)x + m = 0

Hàm số đạt cực trị tại x = 1 thì:

y′(1) = 3 + 2(m + 3) + m = 3m + 9 = 0 ⇔ m = −3

Khi đó,

y′ = 3x2 – 3;

y′′ = 6x;

y′′(1) = 6 > 0;

Suy ra hàm số đạt cực tiểu tại x = 1 khi m = 3.

b) y′ = −(m2 + 6m)x2 − 4mx + 3

y′(−1) = −m2 − 6m + 4m + 3 = (−m2 − 2m – 1) + 4 = −(m + 1)2 + 4

Hàm số đạt cực trị tại x = -1 thì :

y′(−1) = −(m + 1)2 + 4 = 0 ⇔ (m + 1)2 = 4

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Với m = -3 ta có y’ = 9x2 + 12x + 3

⇒ y′′ = 18x + 12

⇒ y′′(−1) = −18 + 12 = −6 < 0

Suy ra hàm số đạt cực đại tại x = -1.

Với m = 1 ta có:

y′ = −7x2 − 4x + 3

⇒ y′′ = −14x − 4

⇒ y′′(−1) = 10 > 0

Suy ra hàm số đạt cực tiểu tại x = -1

Kết luận: Hàm số đã cho đạt cực đại tại x = -1 khi m = -3.

Quảng cáo

Các bài giải sách bài tập Giải tích 12 khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


bai-5-khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so.jsp


Giải bài tập lớp 12 sách mới các môn học