Bài 7 trang 169 Sách bài tập Hình học 12



Đề toán tổng hợp ôn tập cuối năm

Bài 7 trang 169 Sách bài tập Hình học 12: Trong không gian Oxyz, cho mặt phẳng (P): x + 2y - z + 5 = 0 và hai điểm A(-2; -1; 1), B(6; 6; 5). Trong các đường thẳng qua A và song song với (P) hãy viết phương trình đường thẳng mà khoảng cách từ B đến đường thẳng đó là nhỏ nhất.

Lời giải:

Quảng cáo

Gọi (Q) là mặt phẳng đi qua A và song song với (P) thì phương trình của (Q) là (x + 2) + 2(y + 1) - (z - 1) = 0 hay x + 2y - z + 5 = 0. Gọi H là hình chiếu vuông góc của B lên (Q). Giả sử Δ là đường thẳng qua A và song song với (P), I là chân đường vuông góc kẻ từ B đến Δ. Khi đó I ∈ (Q) và BH ≤ BI.

Do đó AH chính là đường phải tìm.

Gọi d là đường thẳng đi qua B và vuông góc với (Q).

Phương trình của d là:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Để tìm giao điểm H = d ∩ (Q) ta thay phương trình của d vào phương trình của (Q), ta có:

6 + t + 2(6 + 2t) - (5 - t) + 5 = 0 ⇒ t = -3.

Do đó H = (3; 0; 8)

Phương trình đường thẳng AH là:

Giải sách bài tập Toán 12 | Giải SBT Toán 12
Quảng cáo

Các bài giải sách bài tập Hình học 12 khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


de-toan-tong-hop-on-tap-cuoi-nam.jsp


Giải bài tập lớp 12 sách mới các môn học