Cho hai mặt phẳng (P1): x + 2y – 3z + 5 = 0 và (P2): −4x – 8y + 12z + 3 = 0

Giải SBT Toán 12 Cánh diều Bài 1: Phương trình mặt phẳng

Bài 16 trang 48 SBT Toán 12 Tập 2: Cho hai mặt phẳng (P1): x + 2y – 3z + 5 = 0 và (P2): −4x – 8y + 12z + 3 = 0.

Quảng cáo

a) Chứng minh rằng (P1) // (P2).

b) Tính khoảng cách giữa hai mặt phẳng (P1), (P2).

Lời giải:

a) Gọi nP1, nP2 lần lượt là hai vectơ pháp tuyến của (P1), (P2).

Ta có nP1 = (1; 2; −3), nP2 = (−4; −8; 12) = −4(1; 2; −3) nên nP2 = −4nP1 và 3 ≠ – 4 . 5.

Do đó, (P1) // (P2).

b) Chọn M(0; −1; 1) ∈ (P1). Vì (P1) // (P2) nên ta có:

d((P­1), (P2)) = d(M, (P2)) = 4.08.(1)+12.1+3(4)2+(8)2+122 = 231456.

Vậy khoảng cách giữa hai mặt phẳng (P1), (P2) là 231456.

Quảng cáo

Lời giải SBT Toán 12 Bài 1: Phương trình mặt phẳng hay khác:

Quảng cáo
Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 12 Cánh diều khác