Một đội tuyển thi bắn súng có 10 xạ thủ, bao gồm 4 xạ thủ hạng I và 6 xạ thủ hạng II

Giải SBT Toán 12 Cánh diều Bài 2: Công thức xác suất toàn phần. Công thức Bayes

Bài 16 trang 95 SBT Toán 12 Tập 2: Một đội tuyển thi bắn súng có 10 xạ thủ, bao gồm 4 xạ thủ hạng I và 6 xạ thủ hạng II. Xác suất bắn trúng mục tiêu của xạ thủ hạng I và hạng II lần lượt là 0,75 và 0,6. Chọn ngẫu nhiên một xạ thủ và xạ thủ đó chỉ bắn 1 viên đạn. Sử dụng sơ đồ hình cây, tính xác suất để viên đạn đó trúng mục tiêu.

Quảng cáo

Lời giải:

Xét các biến cố:

A: “Chọn được xạ thủ hạng I”;

B: “Viên đạn đó trúng mục tiêu”.

Khi đó, P(A) = 410 = 0,4; P(A¯) = 1 – P(A) = 0,6.

             P(B | A) = 0,75; P(B | A¯) = 0,6.

Sơ đồ hình cây biểu thị tình huống đã cho là:

Một đội tuyển thi bắn súng có 10 xạ thủ, bao gồm 4 xạ thủ hạng I và 6 xạ thủ hạng II

Áp dụng công thức xác suất toàn phần, ta có:

P(B) = P(A) . P(B | A) + P(A¯) . P(B | A¯) = 0,4 . 0,75 + 0,6 . 0,6 = 0,66.

Vậy xác suất để viên đạn đó trúng mục tiêu là 0,66.

Quảng cáo

Lời giải SBT Toán 12 Bài 2: Công thức xác suất toàn phần. Công thức Bayes hay khác:

Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 12 Cánh diều khác