Khảo sát ở một trường đại học có 35% số máy tính sử dụng hệ điều hành X. Tỉ lệ máy tính bị nhiễm virus

Giải SBT Toán 12 Chân trời sáng tạo Bài 2: Công thức xác suất toàn phần và công thức Bayes

Bài 6 trang 84 SBT Toán 12 Tập 2: Khảo sát ở một trường đại học có 35% số máy tính sử dụng hệ điều hành X. Tỉ lệ máy tính bị nhiễm virus trong số các máy dùng hệ điều hành X gấp 4 lần tỉ lệ máy tính bị nhiễm virus trong số các máy không dùng hệ điều hành X. Tính xác suất một máy tính sử dụng hệ điều hành X, biết rằng máy tính đó bị nhiễm virus.

Quảng cáo

Lời giải:

Gọi A là biến cố “Một máy tính sử dụng hệ điều hành X” và B là biến cố “Một máy tính bị nhiễm virus”.

Do ở trường đại học đó có 35% số máy tính sử dụng hệ điều hành X nên P(A) = 0,35 và P(A¯) = 1 – 0,35 = 0,65.

Gọi tỉ lệ máy tính bị nhiễm virus trong số các máy không dùng hệ điều hành X là a

(0 ≤ a ≤ 1). Do tỉ lệ máy tính bị nhiễm virus trong số các ấy không dùng hệ điều hành X nên P(B |A¯) = a và P(B | A) = 4a.

Theo công thức xác suất toàn phần, xác suất một máy tính tại trường đại học đó bị nhiễm virus là

P(B) = P(A)P(B | A) + P(A¯)P(B |A¯) = 0,35.4a + 0,65.a = 2,05a.

Theo công thức Bayes, xác suất một máy tính sử dụng hệ điều hành X, biết rằng máy tính đó nhiễm virus là: PA|B=PAPB|APB=0,35.4a2,05a=2841 ≈ 0,683.

Quảng cáo

Lời giải SBT Toán 12 Bài 2: Công thức xác suất toàn phần và công thức Bayes hay khác:

Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 12 Chân trời sáng tạo khác