Chứng tỏ rằng nếu lợi nhuận P(x) là cực đại thì doanh thu biên bằng chi phí biên

Giải sách bài tập Toán 12 Bài 5: Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn - Kết nối tri thức

Bài 1.50 trang 33 SBT Toán 12 Tập 1:

a) Chứng tỏ rằng nếu lợi nhuận P(x) là cực đại thì doanh thu biên bằng chi phí biên.

b) Cho C(x) = 16 000 + 500x – 1,6x2 + 0,004x3 là hàm chi phí và p(x) = 1 700 – 7x là hàm cầu. Hãy tìm mức sản xuất sẽ tối đa hóa lợi nhuận.

Quảng cáo

Lời giải:

a) Ta có lợi nhuận P(x) = R(x) – C(x) trong đó R(x) là doanh thu và C(x) là chi phí.

Khi lợi nhuận đạt cực đại tại x0 thì P'(x0) = R'(x0) – C'(x0) = 0 hay R'(x0) = C'(x0), nói cách khác là doanh thu biên bằng chi phí biên.

b) Ta có hàm lợi nhuận:

P(x) = x.p(x) – C(x) = 1 700x – 7x2 – 16 000 – 500x + 1,6x2 – 0,004x3

        = −16 000 + 1200x – 5,4x2 – 0,004x2.

Suy ra, P'(x) = 1200 – 10,8x – 0,012x2

            P'(x) = 0 ⇔x = 100 (do x ≥ 0).

Bảng biến thiên như sau:

Chứng tỏ rằng nếu lợi nhuận P(x) là cực đại thì doanh thu biên bằng chi phí biên

Vậy mức sản xuất tối đa hóa lợi nhuận là 100 đơn vị hàng hóa.

Quảng cáo

Lời giải Sách bài tập Toán lớp 12 Bài 5: Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn hay khác:

Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 12 Kết nối tri thức khác