Cho hàm số y = x^3 – 3x^2 + 2 có đồ thị (C) trang 36 SBT Toán 12 Tập 1

Giải sách bài tập Toán 12 Bài tập cuối chương 1 - Kết nối tri thức

Bài 1.64 trang 36 SBT Toán 12 Tập 1: Cho hàm số y = x3 – 3x2 + 2 có đồ thị (C).

a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.

b) Viết phương trình tiếp tuyến ∆ của đồ thị (C) tại tâm đối xứng của nó. Chứng minh rằng ∆ là tiếp tuyến có hệ số góc nhỏ nhất của (C).

c) Tìm các giá trị của tham số m để phương trình x3 – 3x2 – m = 0 có ba nghiệm phân biệt.

Quảng cáo

Lời giải:

a) Tập xác định: D = ℝ.

Ta có: y' = 3x2 – 6x2

           y' = 0 ⇔ 3x2 – 6x2 = 0 ⇔ x = 0 hoặc x = 2.

Hàm số đồng biến trên khoảng (−∞; 0) và (2; +∞).

Hàm số nghịch biến trên khoảng (0; 2).

Hàm số đạt cực đại tại điểm x = 0 và y= y(0) = 2.

Hàm số đạt cực tiểu tại điểm x = 2 và yCT = y(2) = −2.

Ta có: limx+y=+;limxy=

Ta có bảng biến thiên như sau:

Cho hàm số y = x^3 – 3x^2 + 2 có đồ thị (C) trang 36 SBT Toán 12 Tập 1

Đồ thị hàm số đi qua các điểm: (3; 2); (2; −2); (−1; −2); (0; 2).

Đồ thị hàm số có tâm đối xứng là điểm (1; 0).

Đồ thị hàm số như sau:

Cho hàm số y = x^3 – 3x^2 + 2 có đồ thị (C) trang 36 SBT Toán 12 Tập 1

b) Tâm đối xứng của đồ thị hàm số là điểm I(1; 0).

Ta có: y'(1) = −3.

Vậy phương trình tiếp tuyến của đồ thị hàm số tại tâm đối xứng của nó là:

y = y'(1)(x – 1) + y(1)

   = −3(x – 1) + 0

   = −3x + 3 (∆).

Ta có: y' = 3x2 – 6x = 3(x2 – 2x + 1) – 3 = 3(x – 1)2 – 3 ≥ −3 với mọi x.

Vậy ∆ là tiếp tuyến có hệ số góc nhỏ nhất của (C).

c) Ta có: x3 – 3x2 – m = 0 ⇔ x3 – 3x2 + 2 = m + 2.

Vậy phương trình x3 – 3x2 – m = 0 là phương trình hoành độ giao điểm của đồ thị (C) và đường thẳng y = m + 2. Suy ra, phương trình đã cho có ba nghiệm phân biệt khi và chỉ khi đường thẳng y = m + 2 cắt đồ thị (C) tại 3 điểm phân biệt, điều này tương đương với −2 < m + 2 < 2 ⇔ −4 < m < 0.  

Quảng cáo

Lời giải Sách bài tập Toán lớp 12 Bài tập cuối chương 1 hay khác:

Quảng cáo
Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 12 Kết nối tri thức khác