Bài 8 trang 47 Toán 12 Tập 1 Cánh diều

Giải Toán 12 Bài tập cuối chương 1 - Cánh diều

Bài 8 trang 47 Toán 12 Tập 1: Tìm giá trị nhỏ nhất và giá trị lớn nhất của mỗi hàm số sau:

Quảng cáo

a) f(x) = 2x3 – 6x trên đoạn [– 1; 3];

b) f(x) = x2 + 3x + 6x + 2 trên đoạn [1; 5];

c) f(x) = ln(x + 1)x + 1 trên đoạn [0; 3];

d) f(x) = 2sin 3x + 7x + 1 trên đoạn -π2;π2

Lời giải:

a) Ta có f'(x) = 6x2 – 6. Khi đó trên khoảng (– 1; 3), f'(x) = 0 khi x = 1.

f(– 1) = 4, f(1) = – 4, f(3) = 36.

Vậy max[-1; 3]f(x) = 36 tại x = 3, min[-1; 3]f(x) = -4 tại x = 1.

b) Ta có f'(x) = x2 + 4x(x + 2)2. Khi đó trên khoảng (1; 5), không tồn tại x để f'(x) = 0.

f(1) = 103, f(5) = 467.

Vậy max[1; 5]f(x) = 467 tại x = 5, min[1; 5]f(x) = 103 tại x = 1.

c) Ta có f'(x) = 1 - ln(x + 1)(x + 1)2. Khi đó trên khoảng (0; 3), f'(x) = 0 khi x = e – 1.

f(0) = 0, f(e – 1) = 1e + 1, f(3) = ln44.

Vậy max[0; 3]f(x) = ln44 tại x = 3, min[0; 3]f(x) = 0 tại x = 0.

d) Ta có f'(x) = 6cos 3x + 7. Khi đó trên khoảng -π2;π2, ta có f'(x) > 0.

f-π2= 3 - 7π2, fπ2=  7π2-1

Vậy max-π2;π2f(x) = 7π2-1 tại x = π2, min-π2;π2f(x) = 3 - 7π2 tại x = -π2.

Quảng cáo

Lời giải bài tập Toán 12 Bài tập cuối chương 1 hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 12 Cánh diều khác