Giải Toán 12 trang 6 Tập 2 Chân trời sáng tạo

Với Giải Toán 12 trang 6 Tập 2 trong Bài 1: Nguyên hàm Toán 12 Tập 2 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 6.

Giải Toán 12 trang 6 Tập 2 Chân trời sáng tạo

Quảng cáo

Hoạt động khởi động trang 6 Toán 12 Tập 2: Khi được thả từ độ cao 20 m, một vật rơi với gia tốc không đổi a = 10 m/s2. Sau khi rơi được t giây thì vật có tốc độ bao nhiêu và đi được quãng đường bao nhiêu?

Lời giải:

Sau khi học xong bài này, ta sẽ giải quyết bài toán này như sau:

Kí hiệu v(t) là tốc độ của vật, s(t) là quãng đường vật đi được cho đến thời điểm t giây kể từ khi vật bắt đầu rơi.

Vì a(t) = v'(t) với mọi t ≥ 0 nên vt=atdt=10dt=10t+C.

Vì v(0) = 0 nên C = 0. Vậy v(t) = 10t (m/s).

Vì v(t) = s'(t) với mọi t ≥ 0 nên st=vtdt=10tdt=5t2+C.

Ta có s(0) = 0 nên C = 0. Vậy s(t) = 5t2 (m).

Vật rơi từ độ cao 20 m nên s(t) ≤ 20, suy ra 0 ≤ t ≤ 2.

Vậy sau khi vật rơi được t giây (0 ≤ t ≤ 2) thì vật có tốc độ v(t) = 10t m/s và đi được quãng đường s(t) = 5t2 mét.

Hoạt động khám phá 1 trang 6 Toán 12 Tập 2: Cho hàm số f(x) = 2x xác định trên ℝ. Tìm một hàm số F(x) sao cho F'(x) = f(x).

Quảng cáo

Lời giải:

Ta có F(x) = x2 vì (x2)' = 2x.

Hoạt động khám phá 2 trang 6 Toán 12 Tập 2: Cho hàm số f(x) = 3x2 xác định trên ℝ.

a) Chứng minh rằng F(x) = x3 là một nguyên hàm của f(x) trên ℝ.

b) Với C là hằng số tùy ý, hàm số H(x) = F(x) + C có là nguyên hàm của f(x) trên ℝ không?

c) Giả sử G(x) là một nguyên hàm của f(x) trên ℝ. Tìm đạo hàm của hàm số G(x) – F(x). Từ đó, có nhận xét gì về hàm số G(x) – F(x)?

Lời giải:

a) Ta có F'(x) = (x3)' = 3x2 = f(x).

Do đó F(x) = x3 là một nguyên hàm của f(x) trên ℝ.

b) Có H(x) = F(x) + C = x3 + C.

Có H'(x) = (x3 + C)' = 3x2 = f(x).

Do đó hàm số H(x) = F(x) + C cũng là nguyên hàm của f(x) trên ℝ.

c) Có (G(x) – F(x))' = G'(x) – F'(x) = f(x) – f(x) = 0.

Vì (G(x) – F(x))' = 0 nên G(x) – F(x) là một hằng số.

Hay G(x) = F(x) + C, C là hằng số bất kì.

Quảng cáo

Lời giải bài tập Toán 12 Bài 1: Nguyên hàm hay khác:

Quảng cáo

Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 12 Chân trời sáng tạo khác