Giải Toán 12 trang 25 Tập 2 Kết nối tri thức

Với Giải Toán 12 trang 25 Tập 2 trong Bài 13: Ứng dụng hình học của tích phân Toán 12 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 25.

Giải Toán 12 trang 25 Tập 2 Kết nối tri thức

Quảng cáo

Vận dụng 3 trang 25 Toán 12 Tập 2:

a) Tính thể tích của khối tròn xoay sinh ra khi quay hình thang vuông OABC trong mặt phẳng Oxy với OA = h, AB = R và OC = r, quanh trục Ox (H.4.28).

b) Từ công thức thu được ở phần a, hãy rút ra công thức tính thể tích của khối nón có bán kính đáy bằng R và chiều cao h.

Vận dụng 3 trang 25 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Lời giải:

a) Chọn hệ trục như hình vẽ.

Khi đó ta có C(0; r), B(h; R). Suy ra BC=h;Rr

Phương trình đường thẳng BC qua C và nhận n=rR;h có dạng:

(r – R)x + h(y − r) = 0 hay y=hr+Rrxh

Thể tích cần tính là:

V=π0hhr+Rrxh2dx=π0hr2+2r.Rrhx+Rrhx2dx

=πr2x+r.Rrh.x2+Rrh2.x330h=πr2h+Rrr2.h+Rr2.h3

Quảng cáo

=πr2h+Rrhr2h+13R2h23Rrh+13r2h=π13R2h+13Rrh+13r2h

=13πhR2+Rr+r2

b) Khi r = 0 thì khối nón cụt trở thành khối nón có chiều cao h, bán kính đáy là R.

Do đó V=13πR2h

Bài 4.14 trang 25 Toán 12 Tập 2: Tính diện tích của hình phẳng được tô màu trong Hình 4.29.

Bài 4.14 trang 25 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Lời giải:

Diện tích cần tính là:

S=045xx2xdx=044xx2dx

=044xx2dx=2x2x3304=323

Bài 4.15 trang 25 Toán 12 Tập 2: Tính diện tích của hình phẳng giới hạn bởi các đường:

a) y = ex, y = x2 – 1, x = −1, x = 1;

b) y = sinx, y = x, x=π2,x=π;

c) y = 9 – x2, y = 2x2, x=3,x=3;

d) y=x, y = x2, x = 0, x = 1.

Quảng cáo

Lời giải:

a)

Bài 4.15 trang 25 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Diện tích cần tính là:

S=11exx2+1dx=11exx2+1dx

=exx33+x11=e+23e1+23=e21e+43

b) Diện tích cần tính là:

S=π2πsinxxdx=π2πxsinxdx

=x22+cosxπ2π=π221π28=3π281

c)

Bài 4.15 trang 25 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Diện tích cần tính là:

S=339x22x2dx=3393x2dx=3393x2dx

=9xx333=9333+9333=123

d)

Quảng cáo

Bài 4.15 trang 25 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Diện tích cần tính là:

S=01xx2dx=01xx2dx=23x32x3301=13

Bài 4.16 trang 25 Toán 12 Tập 2: Các nhà kinh tế sử dụng đường cong Lorenz để minh họa sự phân phối thu nhập trong một quốc gia. Gọi x là đại diện cho phần trăm số gia đình trong một quốc gia và y là phần trăm tổng thu nhập, mô hình y = x sẽ đại diện cho một quốc gia mà các gia đình có thu nhập như nhau. Đường cong Lorenz y = f(x), biểu thị phân phối thu nhập thực tế. Diện tích giữa hai mô hình này, với 0 ≤ x ≤ 100, biểu thị “sự bất bình đẳng về thu nhập” của một quốc gia. Năm 2005, đường con Lorenz của Hoa Kỳ có thể được mô hình hóa bởi hàm số

y = (0,00061x2 + 0,0218x + 1723)2, 0 ≤ x ≤ 100,

trong đó x được tính từ các gia đình nghèo nhất đến giàu có nhất (Theo R.Larson, Brief Calculus: An Applied Approach, 8th edition, Cengage Learning, 2009).

Tìm sự bất bình đẳng thu nhập của Hoa Kỳ vào năm 2005.

Lời giải:

Sự bất bình đẳng thu nhập của Hoa Kỳ vào năm 2005 là:

S=01000,00061x2+0,0218x+17232xdx

=01000,000612x4+4,7524.104x2+17232+2,6596.105x3+2,10206x2+75,1228xxdx

=01000,000612x4+2,6596.105x3+2,10253524x2+74,1228x+17232dx

=01000,000612x4+2,6596.105x3+2,10253524x2+74,1228x+17232dx

=7,442.108.x5+6,649.106.x4+0,70084508.x3+37,0614.x2+17232.x0100

=7,442.108.1005+6,649.106.1004+0,70084508.1003+37,0614.1002+17232.100

= 297945768,2.

Lời giải bài tập Toán 12 Bài 13: Ứng dụng hình học của tích phân hay khác:

Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 12 Kết nối tri thức khác