Viết phương trình mặt cầu đi qua 3 điểm
Bài viết Viết phương trình mặt cầu đi qua 3 điểm với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Viết phương trình mặt cầu đi qua 3 điểm.
Viết phương trình mặt cầu đi qua 3 điểm
Bài giảng: Cách viết phương trình mặt cầu - dạng bài cơ bản - Cô Nguyễn Phương Anh (Giáo viên VietJack)
Phương pháp giải
Gọi I (x; y; z ) là tâm mặt cầu đi qua 3 điểm A, B, C
⇔ IA=IB=IC
+ Dựa vào điều kiện cho trước để tìm phương trình còn lại
⇒ Tọa độ tâm I, R2 =IA2
⇒ Phương trình mặt cầu cần tìm.
Ví dụ minh họa
Bài 1: Cho 3 điểm A ( 2; 0; 1), B (1; 0; 0), C (1; 1; 1) và mặt phẳng (P): x + y + z – 2 = 0. Viết phương trình mặt cầu đi qua 3 điểm A, B, C và có tâm thuộc mặt phẳng (P)
Lời giải:
Gọi I (x; y; z) là tâm mặt cầu đi qua 3 điểm A, B, C
⇔ IA=IB=IC
Do tâm của mặt cầu thuộc mặt phẳng (P) nên: x + y + z – 2 = 0
Ta có hệ phương trình
Vậy I (1; 0; 1) và R2 =IA2=1
Vậy phương trình mặt cầu cần tìm là:
(x-1)2 +y2 +(z-1)2 =1
Bài 2: : Trong không gian hệ tọa độ Oxyz, cho 3 điểm A (1; 0; 0), B (0; 3; 0), C (0; 0; 6). Tìm phương trình mặt cầu (S) tiếp xúc với Oy tại B, tiếp xúc với Oz tại C và đi qua A
Lời giải:
Gọi I (a; b; c) là tâm mặt cầu
IB→=(-a;3-b; -c); IC→=(-a; -b;6-c)
Do mặt cầu (S) tiếp xúc với Oy tại B, tiếp xúc với Oz tại C nên
⇒ I(a;3;6)
I đi qua A nên ta có IA = IB
⇔ IA2 =IB2 ⇔ (a-1)2 +32 +62 =a2 +62
⇔ a=5
Khi đó, I (5; 3; 6) và R2=IA2 =61
Vậy phương trình mặt cầu cần tìm là :
(x-5)2 +(y-3)2 +(z-6)2 =61
Bài 3:Viết phương trình mặt cầu (S) đi qua A (0; 8; 0), B (4; 6; 2), C (0; 12; 4) và có tâm I thuộc mặt phẳng (Oyz)
Lời giải:
Do tâm I thuộc mặt phẳng (Oyz) nên I (0; b; c)
Mặt cầu đi qua A, B, C nên IA = IB = IC
Vậy I (0; 7; 5); R2 =IA2 =26
Vậy phương trình mặt cầu cần tìm là
x2 +(y-7)2 +(z-5)2 =26
Bài tập tự luyện
Bài 1. Viết phương trình mặt cầu đi qua ba điểm A(0; 8; 0), B(4; 6; 2), C(0; 12; 4) và có tâm nằm trên mp(Oyz).
Bài 2. Trong không gian Oxyz, viết phương trình mặt cầu đi qua ba điểm A(1; 2; -4), B(1; -3; 1), C(2; 2; 3) và có tâm nằm trên mặt phẳng (Oxy).
Bài 3. Trong không gian Oxyz cho mặt phẳng (P): x – y – 1 = 0. Lập phương trình mặt cầu đi qua 3 điểm A(2; 1; -1), B(0; 2; -2), C(1; 3; 0) và tiếp xúc (P).
Bài 4. Trong không gian với hệ trục tọa độ Oxyz. Cho mặt phẳng (P): x + 2y – z – 1 = 0 và ba điểm A(1; 1; 0), B(−1; 0; 1), C(0; 2; 1). Viết phương trình mặt cầu có tâm thuộc mặt phẳng (P) và đi qua ba điểm A, B, C.
Bài 5. Cho mặt cầu (S) đi qua bốn điểm M(2; 2; 2); N( 4; 0; 2); P( 4; 2; 0) và Q(4; 2; 2). Tìm tâm I của (S)?
Bài 6. Trong không gian với hệ tọa độ Oxyz cho tam giác ABC với A(2; 3; 4), B(–2;–3;0), C(2; 3; 0). Gọi I là tâm mặt cầu đi qua 3 điểm A, B, C của tam giác. Tìm I để mặt cầu có bán kính nhỏ nhất.
Bài 7. Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt cầu đi qua 3 điểm A(2;0;1), B(1;0;0), C(1;1;1) và có tâm thuộc mặt phẳng (P): x + y + z – 2 = 0.
Bài 8. Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt cầu đi qua 3 điểm M(2;3;3), N(2;-1;-1), P(-2;-1;3) và có tâm thuộc mặt phẳng (α): 2x + 3y – z + 2 = 0.
Bài 9. Viết phương trình mặt cầu có tâm I thuộc (Oyz) và đi qua 3 điểm J(-1; 2; 0), Q(1; -1; 1), F(0; 1; 3).
Bài 10. Viết phương trình mặt cầu có tâm I thuộc (Oxz) và đi qua 3 điểm P(1; 1; 3), Q(2; 1; 3), R(1; 2; -1).
Bài giảng: Cách viết phương trình mặt cầu - dạng bài nâng cao - Cô Nguyễn Phương Anh (Giáo viên VietJack)
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều