Cho hàm số y = (3x-2)/(1-x). Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1

Giải SBT Toán 12 Cánh diều Bài tập cuối chương 1

Bài 101 trang 42 SBT Toán 12 Tập 1: Cho hàm số y = 3x21x .

a) Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1.

Cho hàm số y = (3x-2)/(1-x). Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1

Cho hàm số y = (3x-2)/(1-x). Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1

b) Đồ thị hàm số có tiệm cận ngang là đường thẳng y = 3.

Cho hàm số y = (3x-2)/(1-x). Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1

Cho hàm số y = (3x-2)/(1-x). Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1

c) Điểm M nằm trên đồ thị hàm số có hoành độ x0 ≠ 1 thì tung độ y0 = −3 − 1x01 .

Cho hàm số y = (3x-2)/(1-x). Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1

Cho hàm số y = (3x-2)/(1-x). Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1

d) Tích khoảng cách từ điểm M bất kì nằm trên đồ thị hàm số đến hai đường tiệm cận của đồ thị hàm số đó bằng 1.

Cho hàm số y = (3x-2)/(1-x). Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1

Cho hàm số y = (3x-2)/(1-x). Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1

Quảng cáo

Lời giải:

a) Đ

b) S

c) Đ

d) Đ

Ta có: y = 3x21x .

Tập xác định: D = ℝ\{1}.

limx1 y = limx13x21x = +∞, limx1+ y = limx1+3x21x = −∞.

Do đó, đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1.

limxy = limx3x21x = −3, limx+ y = limx+3x21x = −3.

Do đó, đồ thị hàm số có tiệm cận ngang là đường thẳng y = −3.

Có x = x0 thay vào hàm y ta được:

y = 3x021x0 = 3(x0+1)+1x0+1 = 3+1x0+1 = −3 − 1x01 .

Lấy M(x0; −3 − 1x01 ) thuộc đồ thị hàm số, ta có:

Khoảng cách từ M đến đường tiệm cận đứng x = 1 là: x012 .

Khoảng cách từ M đến đường tiệm cận ngang y = −3 là: 1x012 .

Ta có x0121x012=x0121x012=1 .

Vậy tích khoảng cách từ điểm M bất kì nằm trên đồ thị hàm số đến hai đường tiệm cận của đồ thị hàm số đó bằng 1.

Quảng cáo

Lời giải SBT Toán 12 Bài tập cuối chương 1 hay khác:

Quảng cáo
Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 12 Cánh diều khác