Cho đường thẳng ∆ và mặt phẳng (P): x – 2y – 2z + 1 = 0

Giải SBT Toán 12 Cánh diều Bài 2: Phương trình đường thẳng

Bài 31 trang 58 SBT Toán 12 Tập 2: Cho đường thẳng ∆: x+20242=y+20253=z+20266 và mặt phẳng (P): x – 2y – 2z + 1 = 0.

Quảng cáo

Gọi α là góc giữa đường thẳng ∆ và mặt phẳng (P).

a) Vectơ u = (2 024; 2 025; 2 026) là một vectơ chỉ phương của đường thẳng ∆.

Đ

S

b) Vectơ có tọa độ (1; 2; 2) là một vectơ pháp tuyến của mặt phẳng (P).

Đ

S

c) sinα = |u.n||u|.|n| với u là một vectơ chỉ phương của đường thẳng d,  là một vectơ pháp tuyến của mặt phẳng (P).

Đ

S

d) α ≈ 50° (làm tròn đến hàng đơn vị của độ).

Đ

S

Lời giải:

a) S

b) S

c) Đ

d) Đ

Vectơ u = (2; 3; 6) là vectơ chỉ phương của đường thẳng ∆.

Vectơ u = (1; −2; −2) là vectơ pháp tuyến của mặt phẳng (P).

Ta có: sinα = sin(∆, (P)) = |u.n||u|.|n|=|2.1+3.(2)+6.(2)|22+32+62.12+(2)2+(2)2=1621.

Suy ra α ≈ 50°.

Quảng cáo

Lời giải SBT Toán 12 Bài 2: Phương trình đường thẳng hay khác:

Quảng cáo
Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 12 Cánh diều khác