Bài 2 trang 36 Toán 12 Tập 1 Chân trời sáng tạo

Giải Toán 12 Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản - Chân trời sáng tạo

Bài 2 trang 36 Toán 12 Tập 1: Cho hàm số y = x3 – 3x2 + 2.

Quảng cáo

a) Tìm điểm I thuộc đồ thị hàm số biết hoành độ của I là nghiệm của phương trình y" = 0.

b) Chứng minh rằng I là trung điểm của đoạn thẳng nối hai điểm cực trị của đồ thị hàm số.

Lời giải:

a) Xét hàm số y = x3 – 3x2 + 2. Tập xác định của hàm số là D = ℝ.

Ta có y' = 3x2 – 6x; y" = 6x – 6;      

          y" = 0 ⇔ x = 1.

Với x = 1, ta có y(1) = 0.

Vậy I(1; 0).

b) Ta có y' = 0 ⇔ 3x2 – 6x = 0 ⇔ x = 0 hoặc x = 2.

Bảng biến thiên:

Bài 2 trang 36 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Do đó, hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2; hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là yCT = – 2.

Hai điểm cực trị của đồ thị hàm số là (0; 2) và (2; – 2).

Ta thấy 0+22=12+22=0. Vậy điểm I(1; 0) là trung điểm của đoạn thẳng nối hai điểm cực trị của đồ thị hàm số.

Quảng cáo

Lời giải bài tập Toán 12 Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 12 Chân trời sáng tạo khác