Bài 3 trang 36 Toán 12 Tập 1 Chân trời sáng tạo

Giải Toán 12 Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản - Chân trời sáng tạo

Bài 3 trang 36 Toán 12 Tập 1: Khảo sát và vẽ đồ thị của các hàm số sau:

Quảng cáo

a) y = 3 + 1x;

b) y=x31x.

Lời giải:

a) y = 3 + 1x

1. Tập xác định: D = ℝ\{0}.

2. Sự biến thiên:

● Chiều biến thiên:

Đạo hàm y' = 1x2. Vì y' < 0 với mọi x ≠ 0 nên hàm số đã cho nghịch biến trên mỗi khoảng (– ∞; 0) và (0; + ∞).

● Tiệm cận:

Ta có limxy=limx3+1x=3;  limx+y=limx+3+1x=3. Suy ra đường thẳng y = 3 là tiệm cận ngang của đồ thị hàm số.

Ta có limx0y=limx03+1x=;  limx0+y=limx0+3+1x=+. Suy ra đường thẳng x = 0 (hay trục Oy) là tiệm cận đứng của đồ thị hàm số.

● Bảng biến thiên:

Bài 3 trang 36 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

3. Đồ thị:

Ta có y = 0 ⇔ 3 + 1x = 0 x=13 nên đồ thị hàm số cắt trục Ox tại điểm 13;0.

Đồ thị hàm số không cắt trục Oy.

Ngoài ra, đồ thị hàm số đi qua các điểm (– 1; 2) và (1; 4).

Đồ thị của hàm số đã cho được biểu diễn như hình dưới đây.

Bài 3 trang 36 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Tâm đối xứng của đồ thị hàm số là điểm I(0; 3). Các trục đối xứng của đồ thị hàm số là hai đường phân giác của các góc tạo bởi hai đường tiệm cận x = 0 và y = 3.

b) y=x31x

1. Tập xác định: D = ℝ\{1}.

2. Sự biến thiên:

● Chiều biến thiên:

Đạo hàm y' = 21x2. Vì y' < 0 với mọi x ≠ 1 nên hàm số đã cho nghịch biến trên mỗi khoảng (– ∞; 1) và (1; + ∞).

● Tiệm cận:

Ta có limxy=limxx31x=1;  limx+y=limx+x31x=1. Suy ra đường thẳng y = – 1 là tiệm cận ngang của đồ thị hàm số.

Ta có limx1y=limx1x31x=;  limx1+y=limx1+x31x=+. Suy ra đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.

● Bảng biến thiên:

Bài 3 trang 36 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

3. Đồ thị:

Ta có x = 0 thì y = – 3 nên đồ thị hàm số cắt trục Oy tại điểm (0; – 3).

Ta có y = 0 ⇔ x31x=0 ⇔ x = 3 nên đồ thị hàm số cắt trục Ox tại điểm (3; 0).

Đồ thị của hàm số đã cho được biểu diễn như hình dưới đây.

Bài 3 trang 36 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Tâm đối xứng của đồ thị hàm số là điểm I(1; – 1). Các trục đối xứng của đồ thị hàm số là hai đường phân giác của các góc tạo bởi hai đường tiệm cận x = 1 và y = – 1.

Quảng cáo

Lời giải bài tập Toán 12 Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 12 Chân trời sáng tạo khác