Viết phương trình đường thẳng đi qua 2 điểm cực trị (cực hay, có lời giải)
Bài viết Viết phương trình đường thẳng đi qua 2 điểm cực trị với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Viết phương trình đường thẳng đi qua 2 điểm cực trị.
Viết phương trình đường thẳng đi qua 2 điểm cực trị (cực hay, có lời giải)
Bài giảng: Các dạng bài tìm cực trị của hàm số - Cô Nguyễn Phương Anh (Giáo viên VietJack)
A. Phương pháp giải
Xét hàm số y = ax3 + bx2 + cx + d(a ≠ 0)
Hàm số có cực trị khi và chỉ khi phương trình y' = 0 có hai nghiệm phân biệt x1; x2
Thực hiện phép chia f(x) cho f'(x) ta được f(x) = Q(x).f'(x) + ax + b
Gọi (x1;y1) và (x2;y2) là các điểm cực trị thì f'(x1) = f'(x2) = 0
Do đó, ta có
Suy ra phương trình đường thẳng đi qua 2 điểm cực trị là y = ax + b.
B. Ví dụ minh họa
Ví dụ 1: Viết phương trình đường thẳng đi qua các điểm cực trị của hàm số y = x3 - 2x2 - x + 1
Lời giải
Ta có y' = 3x2 - 4x - 1, y' = 0 có hai nghiệm phân biệt nên hàm số luôn có 2 điểm cực trị
Thực hiện phép chia y cho y' ta được
Do đó đường thẳng đi qua hai điểm cực trị có phương trình
Ví dụ 2: Biết đồ thị hàm số y = x3 - 3mx2 + 3(m2 - 1)x - m3 có hai điểm cực trị A và B. Viết phương trình đường thẳng AB.
Lời giải
Thực hiện phép chia y cho y' ta được phương trình đường thẳng đi qua hai điểm cực trị A và B là
AB: y = (-m2 + 6m - 9)x - m2 + 3m - 3
Ví dụ 3: Tìm m để đường thẳng đi qua hai điểm cực trị của đồ thị hàm số y = 2x3 + 3(m - 1)x2 + 6(m - 2)x - 1 song song với đường thẳng y = -4x + 1.
Lời giải
Ta có y' = 6x2 + 6(m - 1)x + 6(m - 2)
Hàm số có cực trị ⇔ y' = 0 có 2 nghiệm phân biệt
⇔ Δ' > 0 ⇔ 9(m - 1)2 - 36(m - 2) > 0 ⇔ 9(m - 3)2 > 0 ⇔ m ≠ 3
Thực hiện phép chia y cho y' ta có phương trình đường thẳng đi qua 2 điểm cực trị là:
d: y = (-m2 + 6m - 9)x - m2 + 3m - 3
Khi đó d song song với đường thẳng y = -4x + 1
Ví dụ 4: Tìm m để đồ thị hàm số y = x3 - 3x2 + mx có hai điểm cực trị Avà B đối xứng nhau qua đường thẳng x - 2y - 5 = 0
Lời giải
Ta có: y' = 3x2 - 6x + m; y' = 0 ⇔ 3x2-6x + m = 0
Hàm số có hai cực trị khi và chỉ khi Δ' = 9 - 3m > 0 ⇔ m < 3(*)
Thực hiện phép chia y cho y', suy ra phương trình AB:
Đường thẳng d: x - 2y - 5 = 0 được viết lại
Do A,B đối xứng nhau qua dthì thỏa mãn điều kiên cần là (thỏa mãn (*))
Với m = 0 hàm số có dạng y = x3 - 3x2 có hai điểm cực trị A(0;0), B(2;-4)
Khi đó trung điểm AB là I(1;-2) ∈ d (thỏa mãn điều kiện đủ)
Vậy giá trị m = 0 là đáp số của bài toán.
C. Bài tập tự luyện
Bài 1. Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = x3 + 2x2 + (m − 3)x + m có hai điểm cực trị và điểm M(9; −5) nằm trên đường thẳng đi qua hai điểm cực trị của đồ thị.
Bài 2. Tính khoảng cách từ điểm P(3; 1) đến đường thẳng qua hai điểm cực trị của đồ thị của hàm số y = x3 − 3x2 − (m2 − 2)x + m2 sao cho có giá trị lớn nhất?
Bài 3. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = 2x3 + 3(m − 3)x2 − 3m + 11 có hai điểm cực trị đồng thời các điểm cực trị và điểm N(2; −1) thẳng hàng.
Bài 4. Viết phương trình đường thẳng đi qua hai điểm cực trị của hàm số y = x3 – 3x2 + 1.
Bài 5. Tìm giá trị thực của tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3m − 1 có hai điểm cực trị đối xứng với nhau qua đường thẳng d: x + 8y – 74 = 0.
Bài 6. Biết rằng hàm số f(x) = có 2 điểm cực trị x1, x2. Khi đó hãy tính giá trị của biểu thức .
Bài 7. Gọi S là tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số có hai điểm cực trị A, B sao cho tam giác OAB vuông tại O. Tính diện tích của SOAB.
Bài 8. Viết phương trình đường thẳng đi qua các điểm cực trị của hàm số sau:
a) y = x3 – 2x2 – x + 1;
b) y = 3x2 – 2x3.
Bài 9. Cho hàm số y = 2x3 + 3(m – 1)x2 + 6(m – 2)x – 1 (1).
Tìm m để hàm số (1) có đường thẳng đi qua hai điểm cực trị song song với đường thẳng y = – 4x + 1.
Bài 10. Cho hàm số y = x3 + mx2 + 7x + 3 (*).
Tìm m để hàm số (*) có đường thẳng đi qua hai điểm cực trị vuông góc với đường thẳng y = x + 2012.
Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:
- Tìm m để hàm số có 3 điểm cực trị tạo thành tam giác đều (cực hay, có lời giải)
- Tìm m để hàm số có 3 điểm cực trị tạo thành tam giác vuông (cực hay, có lời giải)
- Tìm m để hàm số có 3 điểm cực trị tạo thành tam giác có diện tích (cực hay, có lời giải)
- Cho bảng biến thiên tìm đường tiệm cận đứng, tiệm cận ngang (cực hay, có lời giải)
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều