Bài 1.7 trang 8 Sách bài tập Giải tích 12



Bài 1: Sự đồng biến, nghịch biến của hàm số

Bài 1.7 trang 8 Sách bài tập Giải tích 12: Chứng minh các bất đẳng thức sau:

a) tanx > sinx, 0 < x < π/2

b) Giải sách bài tập Toán 12 | Giải SBT Toán 12

với 0 < x < +∞

Lời giải:

Quảng cáo

a) Xét hàm số f(x) = tanx − sinx trên nửa khoảng [0; π/2);

Giải sách bài tập Toán 12 | Giải SBT Toán 12

x ∈ [0;1/2)

Dấu “=” xảy ra khi x = 0.

Suy ra f(x) đồng biến trên nửa khoảng [0; π/2)

Mặt khác, ta có f(0) = 0, nên f(x) = tanx – sinx > 0 hay tanx > sinx với mọi x ∈ [0; 1/2)

b) Xét hàm số h(x) trên [0; +∞)

Giải sách bài tập Toán 12 | Giải SBT Toán 12 Giải sách bài tập Toán 12 | Giải SBT Toán 12

Dấu “=” xẩy ra chỉ tại x = 0 nên h(x) đồng biến trên nửa khoảng [0; +∞).

Vì h(x) = 0 nên

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Hay

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Xét hàm số trên f(x) trên [0; +∞);

Giải sách bài tập Toán 12 | Giải SBT Toán 12 Giải sách bài tập Toán 12 | Giải SBT Toán 12

Vì g(0) = 0 và g(x) đồng biến trên nửa khoảng [0; +∞) nên g(x) ≥ 0, tức là f′(x) ≥ 0 trên khoảng đó và vì dấu “=” xảy ra chỉ tại x = 0 nên f(x) đồng biến trên nửa khoảng .

Mặt khác, ta có f(0) = 0 nên

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Với mọi 0 < x < +∞.

Quảng cáo

Các bài giải sách bài tập Giải tích 12 khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


bai-1-su-dong-bien-nghich-bien-cua-ham-so.jsp


Giải bài tập lớp 12 sách mới các môn học