Cách tìm căn bậc hai của số phức (cực hay)



Bài viết Cách tìm căn bậc hai của số phức với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách tìm căn bậc hai của số phức.

Cách tìm căn bậc hai của số phức (cực hay)

(199k) Xem Khóa học Toán 12 KNTTXem Khóa học Toán 12 CDXem Khóa học Toán 12 CTST

Bài giảng: Các phép biến đổi cơ bản trên tập hợp số phức - Cô Nguyễn Phương Anh (Giáo viên VietJack)

Phương pháp giải

Quảng cáo

Trường hợp w là số thực: Nếu a là một số thực

+a < 0 ; a có các căn bậc hai là Các dạng bài tập Toán 12 (có lời giải) .

+ a = 0, a có đúng một căn bậc hai là 0.

+a > 0, acó hai căn bậc hai là Các dạng bài tập Toán 12 (có lời giải) .

Trường hợp w = a + bi;a, b ∈ R; b ≠ 0

Gọi z = x + yi là một căn bậc hai của w khi và chỉ khi z2 = w, tức là

Các dạng bài tập Toán 12 (có lời giải)

Mỗi cặp số thực (x; y) nghiệm đúng hệ phương trình trên cho ta một căn bậc hai x + y.i của số phức w = a + bi.

Ví dụ minh họa

Ví dụ 1:Tìm các căn bậc hai của w = -5 + 12i.

Lời giải:

Gọi z = x + yi là một căn bậc hai của số phức w = -5 + 12i

Ta có z2 = w <=> (x + yi)2 = -5 + 12i

<=> Các dạng bài tập Toán 12 (có lời giải)

Vậy số phức w có hai căn bậc hai là 2 + 3i và -2 - 3i.

Quảng cáo

Ví dụ 2:Khai căn bậc hai số phức z = -3 + 4i có kết quả:

Lời giải:

Giả sử w = x + yi là một căn bậc hai của số phức z = -3 + 4i.

Ta có:

w2 = z <=> (x + yi)2 = -3 + 4i

Các dạng bài tập Toán 12 (có lời giải)

Do đó z có hai căn bậc hai là:

z1 = 1 + 2i

z2 = -1 - 2i

Ví dụ 3:Tính căn bậc hai của số phức z = 8 + 6i ra kết quả:

Các dạng bài tập Toán 12 (có lời giải)

Lời giải:

Giả sử w = x + yi là một căn bậc hai của số phức z = 8 + 6i.

Các dạng bài tập Toán 12 (có lời giải)

Ta có:

Do đó z có hai căn bậc hai là Các dạng bài tập Toán 12 (có lời giải)

Chọn đáp án A.

Ví dụ 4: Cho z = 3 + 4i. Tìm căn bậc hai của z.

A. -2 + i và 2 - i         B. 2 + i và 2 - i

C. 2 + i và -2 - i         D. 3 - 2i và 2 - 3i

Lời giải:

Giả sử w = x + yi là một căn bậc hai của số phức z = 3 + 4i.

Ta có:

Các dạng bài tập Toán 12 (có lời giải)

Do đó z có hai căn bậc hai là Các dạng bài tập Toán 12 (có lời giải)

Chọn đáp án A.

Quảng cáo

Ví dụ 5: Căn bậc hai của số phức 4 + 6√5i là:

A.-(3 + √5i)        B.(3 + √5i)         C.Các dạng bài tập Toán 12 (có lời giải)         D. 2

Lời giải:

Giả sử w là một căn bậc hai của 4 + 6√5i. Ta có:

Các dạng bài tập Toán 12 (có lời giải)

Chọn đáp án A.

Ví dụ 6:Gọi z là căn bậc hai có phần ảo âm của 33 - 56i. Phần thực của z là:

A. 6        B. 7        C. 4        D. –4

Lời giải:

Ta có: 33 - 56i = (7 - 4i)2 => z = 7 - 4i

Do đó phần thực của z là 7.

Chọn đáp án A.

Ví dụ 7:Trong C , căn bậc hai của -121 là:

A. -11i        B. 11i        C. -11        D.11i và -11i

Lời giải:

Ta có: z = -121 nên z = (11i)2.

Do đó z có hai căn bậc hai là z = 11i và z = -11i

Chọn đáp án D.

Ví dụ 8: Tìm các căn bậc hai của -9.

A. ±3i        B. -3        C. 3i        D. -3i

Quảng cáo

Lời giải:

Ta có -9 = 9i2 nên -9 có các căn bậc hai là 3i và -3i.

Chọn đáp án A.

Bài tập tự luyện

Bài 1. Tìm các căn bậc hai của w = -3 + 12i.

Bài 2. Tìm các căn bậc hai của số phức z = 8 + 5i.

Bài 3. Tìm căn bậc hai của số phức z = 1 + i3.

Bài 4. Tìm tất cả các giá trị thực của m để 3 +mi là một căn bậc hai của 5 – 12i.

Bài 5. Tìm một căn bậc hai w của số phức z = -7 + 24i.

Bài 6. Tìm căn bậc hai của số phức z = 3 + 4i.

Bài 7. Tìm căn bậc hai của -12 trong tập số phức ℂ.

Bài 8. Tìm căn bậc hai của số phức: -1 + 22i.

Bài 9. Tìm căn bậc hai của số phức:

a) 8 + 6i;               b) 1 – i.                

Bài 10. Tìm căn bậc hai của số phức:

a) 16 – 30i;            b) -8 + 6i;              c) -3 + 4i.

(199k) Xem Khóa học Toán 12 KNTTXem Khóa học Toán 12 CDXem Khóa học Toán 12 CTST

Xem thêm các dạng bài tập Toán lớp 12 ôn thi Tốt nghiệp có lời giải hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


so-phuc.jsp


Giải bài tập lớp 12 sách mới các môn học