Viết phương trình mặt cầu có tâm thuộc đường thẳng d và đi qua 2 điểm A, B (cực hay)
Bài viết Viết phương trình mặt cầu có tâm thuộc đường thẳng d và đi qua 2 điểm A, B với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Viết phương trình mặt cầu có tâm thuộc đường thẳng d và đi qua 2 điểm A, B.
Viết phương trình mặt cầu có tâm thuộc đường thẳng d và đi qua 2 điểm A, B (cực hay)
Bài giảng: Cách viết phương trình mặt cầu - dạng bài cơ bản - Cô Nguyễn Phương Anh (Giáo viên VietJack)
Phương pháp giải
Viết phương trình đường thẳng d về dạng tham số:
Tâm I thuộc đường thẳng d nên I (x0+at; y0+bt; z0+ct)
Mặt cầu đi qua 2 điểm A, B cho trước nên IA = IB
⇒ IA2= IB2
⇒ Tìm được t
⇒ Tọa độ tâm và bán kính ⇒ Phương trình mặt cầu
Ví dụ minh họa
Bài 1: Cho các điểm A (1; 3; 1); B(3; 2; 2). Viết phương trình mặt cầu đi qua hai điểm A, B và tâm thuộc trục Oz
Lời giải:
Do tâm I thuộc trục Oz nên I (0; 0; z)
IA2 =12 +32 +(z-1)2
IB2=32 +22+(z-2)2
Do mặt cầu đi qua 2 điểm A, B nên IA = IB
⇒ IA2= IB2
⇒ 12 +32 +(z-1)2=32 +22+(z-2)2
⇔ 2z=6 ⇔ z=3
⇒ I (0; 0; 3); R2 =IA2 =14
Vậy phương trình mặt cầu cần tìm là:
x2 +y2 +(z-3)2 =14
Bài 2: Cho các điểm A (0; 1; 3) và B (2; 2; 1) và đường thẳng Viết phương trình mặt cầu đi qua hai điểm A, B và tâm thuộc đường thẳng d
Lời giải:
Phương trình tham số của
Gọi I là tâm của mặt cầu, do I thuộc d nên I (1+2t; 2 – t; 3 – 2t)
Ta có: IA2= (1+2t)2+(2-t-1)2+(3-2t-3)2=9t2+2t+2
IB2= (1+2t-2)2 +(2-t-2)2 +(3-2t-1)2= 9t2 -4t+5
Do mặt cầu đi qua 2 điểm A, B nên IA = IB
⇒ IA2= IB2
⇒9t2+ 2t +2= 9t2 -4t+5
⇔ t=1/2
⇒ I(2; 3/2;2); R2= IA2=21/4
Vậy phương trình mặt cầu cần tìm là
(x-2)2 +(y-3/2)2 +(z-2)2 =21/4
Bài 3: Cho các điểm A (-2; 4; 1) và B (2; 0; 3) và đường thẳng Gọi (S) là mặt cầu đi qua A, B và có tâm thuộc đường thẳng d. Tính bán kính mặt cầu (S)
Lời giải:
Phương trình tham số của
Gọi I là tâm của mặt cầu, do I thuộc d nên I (1 + 2t; -2 – t; 3 – 2t)
Ta có:
Bài giảng: Cách viết phương trình mặt cầu - dạng bài nâng cao - Cô Nguyễn Phương Anh (Giáo viên VietJack)
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều