Viết phương trình mặt cầu có tâm thuộc đường thẳng d và đi qua 2 điểm A, B (cực hay)



Bài viết Viết phương trình mặt cầu có tâm thuộc đường thẳng d và đi qua 2 điểm A, B với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Viết phương trình mặt cầu có tâm thuộc đường thẳng d và đi qua 2 điểm A, B.

Viết phương trình mặt cầu có tâm thuộc đường thẳng d và đi qua 2 điểm A, B (cực hay)

Bài giảng: Cách viết phương trình mặt cầu - dạng bài cơ bản - Cô Nguyễn Phương Anh (Giáo viên VietJack)

Quảng cáo

Phương pháp giải

Viết phương trình đường thẳng d về dạng tham số:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Tâm I thuộc đường thẳng d nên I (x0+at; y0+bt; z0+ct)

Mặt cầu đi qua 2 điểm A, B cho trước nên IA = IB

⇒ IA2= IB2

⇒ Tìm được t

⇒ Tọa độ tâm và bán kính ⇒ Phương trình mặt cầu

Ví dụ minh họa

Bài 1: Cho các điểm A (1; 3; 1); B(3; 2; 2). Viết phương trình mặt cầu đi qua hai điểm A, B và tâm thuộc trục Oz

Lời giải:

Do tâm I thuộc trục Oz nên I (0; 0; z)

IA2 =12 +32 +(z-1)2

IB2=32 +22+(z-2)2

Do mặt cầu đi qua 2 điểm A, B nên IA = IB

⇒ IA2= IB2

⇒ 12 +32 +(z-1)2=32 +22+(z-2)2

⇔ 2z=6 ⇔ z=3

⇒ I (0; 0; 3); R2 =IA2 =14

Vậy phương trình mặt cầu cần tìm là:

x2 +y2 +(z-3)2 =14

Quảng cáo

Bài 2: Cho các điểm A (0; 1; 3) và B (2; 2; 1) và đường thẳng Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảiViết phương trình mặt cầu đi qua hai điểm A, B và tâm thuộc đường thẳng d

Lời giải:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Phương trình tham số của Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Gọi I là tâm của mặt cầu, do I thuộc d nên I (1+2t; 2 – t; 3 – 2t)

Ta có: IA2= (1+2t)2+(2-t-1)2+(3-2t-3)2=9t2+2t+2

IB2= (1+2t-2)2 +(2-t-2)2 +(3-2t-1)2= 9t2 -4t+5

Do mặt cầu đi qua 2 điểm A, B nên IA = IB

⇒ IA2= IB2

⇒9t2+ 2t +2= 9t2 -4t+5

⇔ t=1/2

⇒ I(2; 3/2;2); R2= IA2=21/4

Vậy phương trình mặt cầu cần tìm là

(x-2)2 +(y-3/2)2 +(z-2)2 =21/4

Bài 3: Cho các điểm A (-2; 4; 1) và B (2; 0; 3) và đường thẳng Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảiGọi (S) là mặt cầu đi qua A, B và có tâm thuộc đường thẳng d. Tính bán kính mặt cầu (S)

Lời giải:

Quảng cáo

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Phương trình tham số của Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Gọi I là tâm của mặt cầu, do I thuộc d nên I (1 + 2t; -2 – t; 3 – 2t)

Ta có:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài giảng: Cách viết phương trình mặt cầu - dạng bài nâng cao - Cô Nguyễn Phương Anh (Giáo viên VietJack)

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


phuong-phap-toa-do-trong-khong-gian.jsp


Giải bài tập lớp 12 sách mới các môn học